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Fade Durations in Satellite-Path Mobile Radio Propagation
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Robert Gordon Schmier

C.W. Bostian, Chairman

(ABSTRACT)

Fades on satellite to land mobile radio links are caused by several factors, the most

important of which are multipath propagation and vegetative shadowing. Designers of

vehicular satellite communications systems require information about the statistics of

fade durations in order to overcome or compensate for the fades. Except for a few

linfiting cases, only the mean fade duration can be determined analytically, and all other

statistics must be obtained experimentally or via simulation.

This report describes and presents results from a computer program developed at

Virginia Tech to simulate satellite path propagation of a mobile station in a rural area.

The simulator was developed using 869 MHz balloon data provided by Wolfhard Vogel

of the University of Texas at Austin and was tested using helocopter data provided by

Wolthard Vogel and Julius Goldhirsh of the Johns ltopkins University Applied Physics

Laboratory. It generates rapidly-fading and slowly-fading signals by separate processes

that yield correct cumulative signal distributions and then combines these to simulate the

overall signal. This is then analyzed to yield the statistics of fade durations.
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I. INTRODUCTION

Mobile telecommunication services are usually available only in metropolitan centers;

at present, there is no cost-effective way to accomodate rural and remote users. For the

past decade NASA has studied geostationary satellites as a solution to this problem.

NASA expects a satellite based communication system to extend the range of existing

terrestrial based cellular systems. In addition, it will provide voice and data

communications to mobile users over a wide geographical area for such applications

as dispatch, emergency rescue, position location, drug enforcement, and mobile

telephone. A target of 1.2 million subscribers over 7 years is considered realistic,

requiring around 350 channels, with operating costs somewhat lower than charges for

equivalent services using the public-switched telephone network [17].

The first phase of NASA's technology development program for a Land Mobile Satellite

System (LMSS) is called the Mobile Satellite Experiment (MSAT-X). This program

is managed by the Jet Propulsion Laboratory (JPL) and is aimed at developing and

testing the ground segment technologies required for a more advanced second

generation system. These technologies include vehicle antennas, voice processing
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schemes, spectraUy efficient modulation, and fade resistant coding. NASA's goals are

to use 2.4 kbps digital voice or data in a 5 kHz channel with Gaussian minimum shift

keying modulation. The experimental part of the program will consist of two years of

testing using the first generation MSAT satellite. The proposed operational frequencies

are in the UHF and L-bands, with the FCC presently allocating space in the L-band and

setting aside additional space in the UHF band for future use.

Proper selection of modulation and coding schemes requires knowledge of the LMSS

radio channel, and the channel characteristics are a function ofthe propagation effects.

So is the link margin required to provide adequate signal power. Consequently, the

success or failure of LM SS depends heavily upon knowledge of propagation impairments

and upon steps taken to defeat them. Measurements of channel performance in phase

1 of the PROSAT mobile satellite program (initiated by the European Space Agency)

revealed that even in open countryside, shadowing effects from trees and other obstacles

produce fades of 15 dB or so for significant amounts of time; hence, allowing a 15 dB

fade margin in the system will only produce 80 percent circuit continuity [171. The

designer of a mobile communication system must attempt to overcome the fading

caused by propagation impairments by proper system design. The design requires

knowledge of both primary and secondar3' fading statistics. In particular, the statistics

of fade durations must be known in order to design a reliable system. Hence, there is

considerable interest in the statistical distribution of fade durations. However,

measurement results are usually given because, with the exception of a few limiting

cases, only the mean fade duration can be determined analytically. Even the mean fade

duration can only be determined for fades with no line of sight blockage. Any other fade

duration statistics must be obtained experimentally or via simulation.
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This report describes a software modeling approach to the simulation of the dynamic

characteristics of fade durations in rural land mobile communications. The model rests

on the assumption that a fading mobile signal magnitude can be separated into basic

component parts. These consist of a slowly varying lognormally distributed component

and a rapidly varying Rayleigh component. We will show this assumption to be valid

for the data analyzed. The model is expressed in a software simulator that regenerates

the signal envelope received by a mobile. Its input is a cumulative distribution plot

of the signal received by the mobile; this can be either derived from measured data

or estimated. The model output is analyzed for fade duration statistics.

Chapter 2 provides background material for LMSS communications. Chapter 3 reviews

previous simulators designed for LMSS use. Chapter ,_ follows the development of the

initial Virginia Tech (VT) software simulator designed for LMSS use. Chapter .5

introduces improvements to the VT simulator and verifies its operation by comparing its

output to measured data. Chapter 6 finishes with conclusions and recommendations for

future use and study of the simulator.
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II. PROPAGATION MECHANISMS AND

SIGNAL CHARACTERISTICS

2.1 Introduction

Phenomena that effect propagation on land-mobile satellite systems are different both

from those in fixed satellite systems and those on terrestrial mobile radio systems. Fixed

service satellite systems use highly directive antennas that are relatively free from

multipath and shadowing effects, such as due to trees, that are found in a land-mobile

system with smaller, less directive antennas. The signal in terrestrial mobile radio systems

is typically dominated by multipath fading and blockage effects by terrain obstacles

because of the extremely low elevation angles. Land mobile satellite systems, on the

I!. PROPAGATION MECi|ANISMS AND SIGNAL CHARACTERISTICS 4



other hand, encounter less severe impairments and unblocked line of sight conditions

often prevail.

The received signal arriving at the land-mobile antenna has three components: a direct

wave, a specularly reflected wave, and diffusely reflected waves. The direct wave is the

line-of-sight (LOS) signal from the satellite and is affected by the troposphere, the

ionosphere, and obstacles in the propagation path. The specular component is reflected

from the surface near the vehicle and combines coherently with the direct component.

The diffuse component is composed of all the scattered energy from the rough terrain in

the vicinity of the vehicle less any specular component. These three components are

shown in Figure 2.1-1; all these components are affected by vegetation and man made

shadowing obstacles which attenuate the direct and specular components and which may

increase or decrease the diffuse component.

The first part of this chapter will highlight current theory for describing propagation

mechanisms affecting LMSS operation. A summary of the basic physics involved follows

in Section 2.2, drawn from [7] and more complete reports of Smith et al. [24], Flock [16],

and prelimina_' CCIR Study Group 5 documents [I 1]. Section 2.3 discusses construction

of the total received mobile signal for both unshadowed and vegetatively shadowed

conditions. Section 2.4 digresses from propagation issues and summarizes some

probability concepts and methods of describing fading signals. It serves as a background

for discussion in later chapters.
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__ COHERENT COMPONENT

Figure 2.1-1. A physical representation of the LMSS channel showing the direct,
specular, and diffuse components for unshadowed propagation. From Vogel and
Smith [28]
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2.2 Mobile Signal Components

2.2.1 Direct Component

The direct component is principally affected by shadowing obstacles on the earth's

surface such as trees and overpasses, but it may also be degraded by ionospheric and

tropospheric effects. These include Faraday rotation, group delay, absorption,

dispersion, refraction, and scintillation, all of which result from interaction with the

earth's magnetic field and the ambient electron content as a wave passes through the

ionosphere. Extreme values for these effects are summarized in Table 2.2-1 for two

possible LMSS frequencies assuming an elevation angle of 30 degrees, a zenith electron

content of 10 Ls electrons/m 3 , and one-way propagation. Faraday rotation appears to

pose the most significant problem, but use of circular polarization is expected to

minimize any difficulties. Scintillations can also be ignored in LMSS because they

seldom are significant for elevation angles above 10 degrees (30 degrees and above are

typical for the continental U.S.) and frequencies below 10 GI lz [281.

Moisture in the lower atmosphere accounts for tropospheric effects on the direct

component. Table 2.2-2 shows predicted one.way tropospheric losses for an elevation

angle of 30 degrees and indicates that these losses are also negligible.

Shadowing by obstacles, however, causes significant attenuation. In rural areas where

LMSS will be used, obstacles of greatest concern include overpasses and vegetation.

Overpasses, assuming they contain enough steel mesh, cause complete loss of the direct

signal [27]. Vegetation in the LOS path, on the other hand, causes significant but only

!1. PROPAGATION MECtJANISMS AND SIGNAL CIIARACTERISTICS 7



Table 2.2-I. Estimated maximum ionospheric effects for an elevation angle of 30 °,
one-way propagation, and a zenith elcctron column of l0 '8 electrons/m 3. From
Smith et al. [24]

Effect
mi,

Faraday Rotation

Propagation delay

Variation in direction

of arrival

Refraction

Absorption (mid-lacs)

Dispersion

Frequency

Dependence -

i/f 2

I/f2

I/f 2

1/f 2

1/f 2

1/f 3

_a_icude
850 _z

150 e

0.35S

16 sec.

o f arc

> 50"

>0. OIA dB

O. 65 nsec/HHz

16o6 _z

42 °

O.ls

_. 7 sec

of arc

> 14"

>0.00_ dB

0. i nsec/_z
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Table 2.2-2. Estimated tropospheric attenuation for an elevation angle of 30 ° and
one-way propagation. From [! I]

Effe==
m, ul

Clear air absorp=ipn

3 g/m 3 (dry)

7.5 g/m 3 (average)

17 g/m 3 (moLst)

Cloud attenuation

0.5 g/m 3, I km thick

I g/m 3, 2 km thick

Fog attenuation

0.05 g/m 3 (average)

0 go 75m hr.

0.05 g/m 3 (heavy),

O to 150m hr.

Rain attenuation

5 mm/h

25 mm/h

Ha@nit_de.(dB)
1

850 HHz

0.06

0.06

0.06

<O.Ot

<0.01

<0.01

<0.I

1600 HHz

0.07

0.07

0.07

4

<0.01

<0.01

<0.01

<0.i
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partial shadowing of the direct component. Attenuation of the direct component by

vegetation is assumed to be, and is shown to be in Section 4.2, lognormally distributed.

Since one can assume complete loss of the direct component of the signal under

overpasses, and this is fairly well understood, we will not examine this aspect of

shadowing. We will also ignore ionospheric and tropospheric effects on the direct

component since they have been found to be negligible. Shadowing by vegetation, on the

other hand, is significant and presently not well understood. This element of shadowing

is important and must be considered in our analysis and modeling efforts. Analytic

solutions for fades in LMSS due to vegetative shadowing are not yet mature so they will

be pursued From a statistical viewpoint for development of"a fading signal model.

2.2.2 Specular Component

The specular component is a phase coherent wave reflected from the ground in the

vicinity of" the mobile receiver. This component may cause deep fades in the total

received signal if its amplitude is comparable to that of the direct component and its

phase is opposite. The specular component is primarily reflected from the region of the

first Frcsnel zone on the scattering surface. Equations for the location and size of this

elliptical region are defined in [3]. Generally, the Fresnel zone size decreases with

increasing grazing angle and frequency.

Circularly polarized waves like those to be used in LMSS produce specular reflected

waves that are elliptically polarized. Reflections from grazing angles below the Brewster

angle, which may van from 6 to 27 degrees, result in waves with the same sense as the

I!. PROPAGATION MECHANISMS AND SIGNAL CtlARACTERISTICS 10



incident wave. For grazing angles above the Brewster angle, the specular reflection will

be of opposite sense to the incident wave. Because the elevation angle in LMSS usually

will vary from 20 to 60 degrees, most specular reflections will arrive above the Brewster

angle and be polarized in the opposite sense to the incident wave.

The magnitude of the specular component is determined by the reflection coefficient for

the ground surface in the area of the first Fresnel zone. The specular reflection

coefficient, Rs, is derived from a simple model in [31 and is defined as

Rs = PsDRo (2.2-1)

where Ps is the surface roughness factor, D is the divergence coefficient caused by the

curvature of the earth, and R0 is the complex voltage reflection coefficient for a smooth

planar earth.

The surface roughness factor, Os, approaches unity for a smooth surface and decreases

for increasing surface irregularity [3]. The curved earth divergence factor, D, is

approximately unity for LMSS applications [28]. The complex voltage reflection

coefficient, R0, depends on the surface conductivity, relative permittivity, grazing angle,

and the polarization of the incident wave [181. Figure 2.2-1, taken from Butterworth [8],

gives an indication of the reflection coefficient for a right hand circularly polarized

incident wave as a function of grazing angle. The reflected wave consists of a

combination of right hand and left hand polarized components. For Figure 2.2-1,

conditions of medium dry soil, a frequency of 870 MHz, and a surface irregularity

standard deviation of 0.1 m are assumed. The Brewster angle for these conditions is 15

degrees and the figure shows domination of the left hand component above this angle.

!1. PROPAGATION MECHANISMS AND SIGNAL CHARACTERISTICS I I



(RHCP| s

(LHCP) s

IO0

Figure 2.2-1. Components of the specular reflection coefficient as a function of the

grazing angle for a RHCP incident wave at 870 MHz. From Butterworth [8]
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The antenna pattern must also be included when determining the overall effect of the

specular component. Antennas considered for use in LMSS are not very directive, but

they do exhibit a relatively low gain for signals received below the horizon and they do

discriminate against signals polarized in the opposite sense to the incident wave. The

specular component in LMSS is received by the antenna from below the horizon where

the antenna gain is low. In addition, the grazing angle for the specular component is

usually greater than the Brewster angle leading to opposite polarization of the specular

component and discrimination against the specular component by the antenna.

In an analysis made by Butterworth [8] which included antenna effects such as

polarization and low angle discrimination, fade depths from specular waves were found

to be a negligible 1 dB for elevation angles above 20 degrees. As a result of this analysis

and others [28], we expect the specular component to be neglegible in LMSS links with

elevation angles above 20 degrees, and we will ignore it in our analysis of the received

signal envelope.

2.2.3 Diffuse Component

The diffuse component is the phase incoherent portion of the total received mobile signal

and represents the sum of all of the waves scattered from the terrain around the mobile,

but outside the first Fresnel zone. The diffuse component has little directivity and its

magnitude is assumed to be Rayleigh distributed while its phase is uniformly distributed.

Interference of the diffuse component with the direct component causes rapid fading in

the received mobile signal.

II. PROPAGATION MECI-IANIS,MS AND SIGNAL CHARACTERISTICS 13



A simple relationship to determine the average magnitude of the diffuse component is

presented in [3] and is given as

Ro = Pa Ro (2.2-2)

where RD is the diffuse reflection coefficient, 1%is the diffuse scattering coefficient, and

R0 is the reflection coeMcient of a smooth planar earth. For very rough surfaces and

non-directional antennas, Ro is reported to have an average value of 0.35. If the

scattering surface is absorptive, such as vegetation covered ground (this includes

vegetation near the ground, but not vegetation above the mobile such as trees), then Ro

will be on the order of 0.1 [3].

As with the specular component, the antenna pattern affects the influence of the diffuse

component on the received signal. Because the antenna gain rolls off below the horizon,

most of the contribution by the diffuse component will be from angles above the

horizon. Consequently, the average diffuse component is small relative to the direct

component (usually over IO dB), but it cannot be ignored because it is Rayleigh

distributed and fades as large as 5 dB can be expected for small percentages of time.

II. PROPAGATION MECHANISMS AND SIGNAL CHARACTERISTICS 14



2.3 Total Mobile Fading Signal

2.3.1 Unshadowed Mobile

In the case of propagation for the unshadowed mobile, shown previously in Figure 2.1-1,

the received signal has two significant components. The coherent component consists

of the direct wave and the negligible specular ground reflection. The incoherent

component consists of the diffuse reflections. There is no fading of the direct wave due

to obstacles for the case of the unshadowed mobile, and as discussed previously,

atmospheric effects are negligible. For this case, the combination of the components

may be represented as

R I = Rdlr + Rspec + Rdif (2.3-1)

Neglecting the specular component, this reduces to

R z _ Rdir + Rag (2.3-2)

Since the direct component is essentially constant relative to the fast varying diffuse

component and the diffuse component is Rayleigh distributed in amplitude and

uniformly distributed in phase, the total received unshadowed signal has a Rician

distribution [41.

II. PROPAGATION MECtlANISMS AND SIGNAL CIIARACTERISTICS 15



2.3.2 Vegetatively Shadowed Mobile

Propagation mechanisms for vegetatively shadowed mobile communications are shown

in Figure 2.3-1. The problem of modeling a vegetatively shadowed mobile signal is

presently not well understood, Again the received signal has two significant components,

the coherent direct and specular waves and the incoherent diffuse reflections from both

the terrain and the vegetation. In the case of the shadowed mobile, the specular and

atmospheric effects on the direct component are still negligible, but in this case there is

fading of the direct wave due to obstacles in the propagation path.

Neglecting the specular component, the combination of the components may be

represented as

R 1 ._ Rdir + Rag (2.3-3)

Here the diffuse component is still assumed to be Rayleigh distributed in magnitude and

uniformly distributed in phase, and the direct component is assumed to be lognormally

ditributed [251. The distribution of the total received shadowed signal, i.e. the

combination of the Rayleigh distributed diffuse component and the lognormally

distributed direct component, will be referred to as the VS (vegetatively shadowed)

distribution and is discussed in detail in [251.
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Figure 2.3-1. A physical representation of the LMSS channel showing the LOS,
specular, and diffuse components for vegetatively shadowed propagation [25].
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2.4 Statistical Functions For Mobile Signal Analysis

2.4.1 Primary Statistics

Primary statistics include the probability density function and the cumulative

distribution function. The important distribution functions necessary for describing

LMSS signals include the Rayleigh, Rician, lognormal, and the VS distributions. Each

of these is discussed here for future reference.

Rayleigh Density Function

The magnitude of the diffuse component of the mobile signal is described by the

Rayleigh density function. The diffuse component is the sum of many random phasors,

each of which may be represented by amplitude A, and phase _,. The result, in equation

form, is

N

Rail = • explj0l = Y_At exp[j_i] (2.4-1)
i=1

where r is the amplitude of the diffuse component, 0 is the phase of the diffuse

component, A, and q_, are the anaplitude and phase (phase measured with respect to the

direct component), respectively, of the i th component of the scattered wave. If the

magnitude of each A, is much smaller than the magnitude of r, _, is uniformly distributed,

and N is sufficiently large, then r can easily be proven to be Rayleigh distributed and 0

uniformly distributed [41. These conditions appear to be reasonable in LMSS for
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scattering from a rough surface such as the ground, and the Rayleigh model appears

justified. The density function for the Rayleigh distribution is defined as

PC )= [-7

p(r) = 0 , r<O

, r>O

(2.4-2)

where r is the envelope voltage of the received signal and ct2 is the mean square value of

r.

Rician Density Function

The Rician density function arises for the case of a gayleigh distributed diffuse

component in the presence of a strong, constant direct component. For unshadowed

propagation, the total received mobile signal is the sum of the diffuse component

(Rayleigh distributed in magnitude and uniformly distributed in phase) and the relatively

constant direct component. This may be expressed as

Rj = r explj0l = Ao expljq_ol + w expljgo] (2.4-3)

where r is the amplitude of R_, 0 is the phase of RI relative to the direct component, A0

is the amplitude of the direct component, q_ois the phase of the direct component, w is

the amplitude of the diffuse component, and ¢ is the phase of the diffuse component

relative to the direct component. The total received signal for this case will be Rician

distributed with a density function defined as [4]
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p(r) = exp (r 2 + Ao2) L[2A or
k2

r_0

(2.4-4)

p(r) = 0 , r < 0

where k 2 = ct2 or the mean square value of the Rayleigh component alone, A0 is the

voltage amplitude of the direct component, and 1o is the modified Bessel function of order

zero. By normalizing the amplitude of the direct component to unity, this reduces to

= 2 r I (r2 + 1)

exp[ k2
l [2r'_
0V- -j , r > 0

(2.4-5)

p(r) = 0 , r<0

where k2 = a21Ag and r is now a ratio of the received signal level to Ao.

The Rician distribution can be completely specified by the parameter k or by the decibel

equivalent, K, which is defined as

K = 20 logio k (2.4-6)

The parameter K can be interpreted as the power in the Rayleigh component of the

signal relative to the power in the constant component. There is some ambiguity in the

literature for the definition of K; it is sometimes defined as 201Oglo(l/k) which gives a

value with the opposite sign as Equation 2.4-6. We will always use Equation 2.4-6 to

define K.
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Lognormal Density Function

The lognormal density function is used to describe slow fading of the direct component

of the mobile signal when vegetative shadowing is present. The probability density of a

lognormally distributed signal is defined as [19]

1 exp[- 1 ln•-l_ 2

p(r)=O , r<0

, r>0

(2.4-7)

where r is the signal voltage amplitude, _ is the mean of In(r), and cs is the standard

deviation of In(r). If r is converted to its decibel form, R, where R is defined as

R = 20 loglor (2.4-8)

then R is normally distributed. The density function of R is

p(R) - x/_n cR - \_- (2.4-9)

where _ and cR are the mean and standard deviation of R. The mean and standard

deviation of R can be related to those of r by [7]

laR = (20 log]oe ) la (2.4-10)

and

_, = (20 log]0e) o (2.4-11)

where e is the base of the natural logarithm.
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VS Density Function

The VS density function is used to describe the sum of a slowly fading vegetatively

shadowed direct component and a Rayleigh distributed diffuse component. This density

function is similar to the Rician function, but now instead of being constant, the direct

component of the mobile signal is a lognormally distributed random phasor. The total

received signal may be expressed as

R l = r explj0] = z exp[j_oo] + w exp[jq_l (2.4-12)

where r is the amplitude of &, 0 is the phase of R, relative to the direct component, z

is the lognormally distributed direct component, _00is the uniformly distributed phase of

the direct component, w is the amplitude of the diffuse component, and qois the phase

of the diffuse component relative to the direct component. The density function for the

received signal in this case is the VS density function anti is defined as [201

°° 1 [(rz'_ [ (haz-_t)2 (r2 + z2)] dz (2.4-13)r j" 7 o\-_-o/ exp 2d 0 2b 0

where r is the signal voltage, b0 represents the average scattered power due to multipath,

z is the lognormally distributed component, _/_-" and la are the standard deviation and

mean of In z, and I0 is the modified Bessel function of order zero. The signal voltage, r,

is Iognormal for large values and Rayleigh distributed for small values [20].

Distribution Functions

Signal level statistics are usually not displayed using density functions, but with a

cumulative distribution function (more often shortened to distribution function) plotted
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on probability paper. The cumulative distribution functions (CDF) refer either to the

function for which the signal exceeds a level R, G(R), or to the function for which the

signal is below a level R, F(R). These are defined as [4]

R

F(R) -- P(r _ R} = S p(r) dr (2.4-14)
-o0

O0

G(R) = P(r 2 R} = S p(r)dr (2.4-15)
g

where p(r) is the probability density Function, F(R) is the probability that the signal is

less than the threshold R, and G(R) is the probability that the signal exceeds the

threshold R. G(R) and F(R) have the following properties [22]

0 < F(R) < 1; 0 < G(R) < 1 (2.4-16)

F(- oo)=0, F(+ oc)= 1; G(- oo)= I, G(+ oo)=0 (2.4-17)

F(M) = G(M) = 0.5, M - median value (2.4- [8)

F(R2) > F(R1), G(R2) < G(R_); R l _ R 2 (2.4-19)

G(R) = 1 - F(R) (2.4-20)

The primary statistic most often found in the literature, and in this work, is G(R). To

display G(R) graphically, probability paper is used. Both logarithmic and Rayleigh

probability paper will appear here. Both forms of probability paper use an ordinate axis

labeled in decibels and an abscissa labeled in percent. On logarithmic probability paper,

a lognormal distribution plots as a straight line. On Rayleigh probability paper, a

Rayleigh distribution plots as a straight line. The mean of G(R) can be read directly

from either probability paper as the ordinate value at the 50% point on the abscissas.

For lognormal distributions, the standard deviation, _R, may be calculated from [I]
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(_g= R84,/,- Rsoo/,= Rsoo/o- R_6O/o (2.4-21)

where the R values are in decibels and correspond to the points at the percents noted in

the subscripts.

In general, G(R) is most commonly plotted on logarithmic probability paper. Rayleigh

probability paper is only used in our work as a check to determine ifa signal is Rayleigh

distributed (i.e., if the CDF of a signal plots as a straight line on Rayleigh probability

paper, then the signal is Rayleigh distributed). Example plots of lognormal distributions

on logarithmic probability paper are shown in Figure 2.4-1. Plots for Rician

distributions, again on logarithmic probability paper, are shown in Figure 2.,I-2. An

example Rayleigh distribution is plotted in Figure 2.,I-3 on Rayleigh probability paper

and in Figure 2.4-4 on logarithmic probability paper. An example of a VS distribution

on logarithmic probability paper is shown in Figure 2.4-5.

2.4.2 Secondary Statistics

l'he secondary statistics of interest in our work include fade duration and interfade

interval. Fade duration is defined as the amount of time attenuation exceeds a given

threshold, lnterfade duration is defined as the amount of time between fades of a given

duration. A graphical illustration of fade and interfade durations is given in Figure 2.,I-6.

These secondary statistics describe the dynamic, time-varying characteristics of the

signal received by the mobile. The dynamics of the mobile signal depend on conditions

such as shadowing, mobile speed, signal source direction, and antenna pattern [7]. We
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% TIME RECEIVED SIGNAL IS GREATER
THAN ORDINATE

Figure 2.a-1, Cumulative distribution functions for lognormally distributed signals.
The values of"the mean (_) and the standard deviation ((r) are in dB 171.
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Figure 2.4-6. Definition of fade and interfade duration [6[.
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are primarily concerned with fade durations of the mobile signal in this work and will

only treat this secondary statistic.

Little has been done in LMSS for fade duration studies, hence the methods for

displaying fade durations in this work have been drawn from rain attenuation studies.

There are three common ways to display rain fade and interfade duration results for a

specified period. One way is a fade duration table such as that shown in Table

2.4-l,which shows the number of fades or events which fall in each threshold and

duration bin. A second way is with a histogram showing the number of events for each

threshold. A histogram is shown in Figure 2.4-7. Finally, fade and interfade duration

results can be displayed as cumulative distributions, one for each threshold. In this case,

the ordinate indicates the number of events with a duration greater than or equal to the

abscissa. An example is given in Figure 2.4-8.

These methods for displaying fade durations must be modified slightly for LMSS

applications. In our LMSS work, vehicle speed is normalized by time so that duration

of a fade is given in wavelengths traveled by the mobile instead of time. Other than this

minor modification, the three methods for displaying rain fade durations are directly

applicable to LMSS.

In this work we are interested in finding a way to predict fade duration results for a

location where a cumulative distribution plot has either been estimated or measured.

Few analytical results are available for this problem. Consequently, we are interested in

a model which wilt generate a time sequence of attenuation points given a distribution

plot for input. From this sequence of attenuation points, we will generate fade duration

statistics.
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Table 2.4-1. Fade duration table for Vogel's 1978, CTS data at 11.7 GHz, 50.0 °

elevation angle, circular polarization [26].

Duration

(rain.) 3
0 - I 32

I - 2 9

2 - _ 11

& 8 13

8 - 16, 11

16 - 32 9
32+ 2

Threshold (dB)
6 10 20 25

31 II

7 4

12 6

9 5

7 2

I

16 2
I 0

0 I

1
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Figure 2.4-7. Fade duration histogram for 10 dB fades from Vogel's February 1978
- January 1979 CTS data at 11.7 GHz, 50.0 ° elevation angle, circular polarization
from [26]
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III. REVIEW OF THE LITERATURE

There have been only limited efforts and a few experimental studies aimed at

characterizing earth-space propagation related to LMSS. A good summary of LMSS

propagation experiments and modeling efforts is presented in [7] with additional

modeling efforts given in [25]. There is a total lack of analytic results for fade durations

in LMSS. Because of this lack of analytic results, simulators have been developed to

obtain the dynamics of a LMSS signal. This chapter summarizes these simulators after

first providing some needed background on the time behavior of LMSS signals and

signal distributions.

3.1 Summary of Experimental LMSS Study Results

From the experimental studies reviewed in [7], a comparison of different data sets shows

that the signal fading statistics behave in a fairly predictable manner. This predictable

behavior is seen in Figure 3.1-1 which shows a cumulative distribution plot comparing
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three different data sets. These curves appear to have Rician distribution characteristics

at high signal levels and lognormal characteristics at low signal levels. The Rician

portion of the curves appears to be insensitive to elevation angle and shadowing [91.

One set of experiments was conducted by the Canadian Communications Research

Center (CRC) at 870 and 1542 MHz. Measurements made by a mobile following a

balloon-borne transmitter in wide open regions recorded multipath signal statistics that

followed a Rician distribution with a mean value for the diffuse to line-of-sight

component ratio of-I l dB. Figure 3.1-2 shows an example of a distribution plot of the

unshadowed CRC data, but K for this case is -14 dB. Measurements made by a mobile

following a helocopter-borne transmitter in vegetatively shadowed areas showed that

signal statistics depended strongly on the vegetation present. Figure 3.1-3 shows the

effect of shadowing on a distribution plot. In these measurements the Rician portion

of the curves changed little with the amount of shadowing.

Other experiments were conducted by Wolfhard Vogel, Garry Hess, and Roy Anderson.

These experiments had findings similar to the CRC experiments; hence, they will not be

covered in detail here. Figure 3.1-4 shows a typical time plot of a received mobile signal.

It is drawn from one of Vogel's experiments where he used a balloon-borne transmitter

to simulate a satellite signal.
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3.2 Signal Simulators for LMSS

Because of the lack ofanalytic results for LMSS signal dynamics, several simulators have

been developed to synthesize an LMSS signal whose dynamics can be analyzed. These

include a hardware simulator at CRC and two simulators at The Jet Propulsion

Laboratory (JPL), one implemented in hardware and the other in software.

3.2.1 CRC Hardware Simulator

The hardware simulator developed at CRC is reported by Butterworth in [9] and [lO].

It is designed to reproduce the fading effects for land, sea, and air mobile applications.

Only the land mobile application will be discussed here. The hardware simulator was

built and tested using two different configurations. We will discuss only configuration

2 as described in [10]; Figure 3.2-1 shows a block diagram of this configuration.

In the CRC simulator, the input signal is split into two paths: a direct path where the

signal is attenuated according to a lognormal distribution by a voltage controlled

attenuator (VCA) and a path where the signal is modulated in amplitude and phase by

a Rayleigh fading generator (RFG). The RFG is a quadrature modulator controlled by

two independent pseudo-random sequences (I and Q). The spectrum of these sequences

is shaped by special filters so that the resulting RFG output signal has a spectrum

similar to the multipath signal received by an omnidirectional land-mobile antenna. By
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Figure 3.2-1. Configuration 2 of the CRC hardware simulator. From Butterworth
[101
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varying the cut-off frequency of the lowpass shaping filters, the simulated vehicle speed

can be controlled [10].

The VCA emulates the shadowing effects of such roadside obstacles as trees and

buildings. The VCA applies a lognormally distributed attenuation to the direct

component of the signal. It is controlled by a third pseudo-random sequence (LN)

which varies at a rate of one-hundredth of that of the I and Q sequences. The fading

rate was determined by looking at an experimentally obtained chart-recording of a

received satellite signal such as that shown in Figure 3.2-2. The thick black line in this

figure approximates the long-term mean value of the signal which varies due to

shadowing effects. This figure shows that shadowing variations in the signal are much

slower than the rapid variations due to diffuse multipath effects. After the shadowing

fade rate has been set, the mean value of the VCA attenuation is automatically set to

2.5 times the standard deviation produced by the control sequence LN. The standard

deviation can be set from 0 to 6 dB in 1 dB steps.

The simulator is usually controlled by the pseudo-random sequences I,Q, and LN, but

this has the drawback of being unable to simulate accurately non-stationary statistics.

Shadowing is one of the non-stationary statistics resulting because some routes are

shadowed while others are not. If the simulator is controlled by recorded LMSS data

instead of the pseudo-random sequences, then the non-stationary phenomena can be

better approximated. External control signal input ports on the CRC simulator are

provided for this purpose, but no information is presently available on this mode of

operation.

To evaluate the simulator, the output signal was processed and analyzed with the same

equipment as that used for the CRC field tests mentioned in Section 3.1. Figure 3.2-3
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shows distribution functions for empirical LMSS data collected using INMARSAT

MARECS-A satellite and an omnidirectional antenna. The goal was to match the

output of the simulator to the suburban data curve in this figure. Trial and error

procedures showed the data were most accurately modeled for unshadowed conditions

by a Rician distribution with a constant K of-10 dB, and a mean and standard deviation

chosen for the shadowing of-7.5 dB and 3 dB respectively. The total empirical data set

was constructed by concatenating samples of shadowed and unshadowed data sets in the

proper proportions. Figure 3.2-4 shows the results from this mixing procedure on the

signal statistics using 33% shadowed data points. Butterworth noted this curve matches

the suburban data curve of Figure 3.2-3 very closely. Butterworth also compared

level-crossing rates (number of times that the signal envelope crosses a threshold level

with positive slope in a given period of time) and average fade durations (average

amount of time that the signal envelope spends below a threshold level) for the sihaulator

output and the suburban data curve and found them to match satisfactorily, but he did

not discuss fade duration statistics.

Distribution functions for other proportions of data are shown in Figure 3.2-5. The

curve for 5°'0 shadowing was noted to be a reasonable match to the rural farmland data

of Figure 3.2-3 [9]. Thus by varying the percentage of shadowed data points which are

included in the overall simulated data set, other data sets may be simulated.
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3.2.2 JPL Hardware Simulator

The hardware simulator developed at JPL was designed to perform end-to-end

evaluation of LMSS communication links. The simulator can mimic such multiple

channel impairments as multipath fading, Doppler shift, thermal noise, adjacent and

cochannel interference, bandlimiting, and nonlinearities.

The process of synthesizing propagation impairments in the JPL simulator is very similar

to that for the CRC simulator. To represent multipath fading, the input signal is split

into two paths: a direct path and a path where the input signal is modulated by a

Rayleigh multipath generator. The resulting signal envelope has a Rician distribution.

This approach for generating multipath propagation effects is identical to that of the

CRC simulator, but the direct path in the JPL simulator cannot be dynamically

attenuated to simulate vegetative shadowing.

The JPL simulator has been used to evaluate bit error rates of GMSK and 2-bit MSK

modulation under various fading conditions [13,14] and to test NBFM modulation on

voice systems [231. There has been no further verification of the signal fading statistics

beyond confirming that the output signal spectrum approximated theoretical predictions

for a Rician fading signal.
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3.2.3 JPL Software Simulator

The JPL software simulator has different capabilities than the JPL hardware simulator

and is designed more for analyzing the dynamic statistics of a fading mobile signal. The

software simulator generates multipath fading in the same manner as both hardware

simulators. The spectrum of the fading multipath signal can be adjusted for the speed

of the mobile, and Doppler shifts can be put into the direct component. In addition, the

software simulator can include effects of a specular component and of an antenna

pattern. These features make the software simulator more flexible than the hardware

simulators, but the software simulator presently does not incorporate shadowing effects

[15l.

A sample of the amplitude time plot produced by the .IPL software simulator, which

produces 2400 samples per second, is shown in Figure 3.2-6. Analysis of the amplitude

level statistics showed close agreement between the simulator output and those of a

Rician distribution. Histograms of fade duration and interfade interval were also made

for two different Rician K parameters at a threshold of-5 dB. These are shown in

Figures 3.2-7 and 3.2-8. Note that the fade durations were not normalized to

wavelengths traveled as we plan. No further analyses were reported to correlate

software simulator output with fading statistics observed from empirical measurements.
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3.2.4 Summary and Comparison of Simulators

The three LMSS simulators discussed all have the same basic configuration which was

shown for the CRC hardware simulator in Figure 3.2-1. Each generates the diffuse

process for the multipath fades in exactly the same manner. Beyond its basic

configuration and multipath fade generators, each of the simulators has some unique

features, but only the CRC simulator can dynamically model vegetative shadowing. This

feature in the CRC simulator is extremely important and necessary in a LMSS simulator

because vegetative shadowing plays a large role and is responsible for much of the deep

fading in the received mobile signal.

Our simulator was developed using all the previous simulators as a guide. Our primary

concerns in the simulator are multipath and vegetative fading. The basic configuration

of our simulator, the Virginia Tech (VT) simulator, is the same as the JPL and CRC

simulators. Initially, the diffuse process in the VT simulator is generated exactly as in

the other simulators. The vegetative shadowing, however, is generated differently than

in the previous simulators. To account for vegetative shadowing, the VT simulator uses

a scaled version of a lognormal, universal data set that is based on an empirical data set.

This scaling procedure is discussed in detail in Section 4.4. Because the scaling

procedure is most easily implemented in software (in addition to flexibilities offered by

software) we opted to build our simulator using software instead of hardware.
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IV. SIMULATOR DEVELOPMENT

4.1 Introduction

In rural areas, LMSS fades are primarily due to shadowing by vegetation and

interference between line-of.sight and diffusely reflected waves. The fades due to

vegetation account for observed slow fades while fast fades result from the diffusely

reflected component. The unshadowed fast fades appear to have a Rician distribution

due to a phasor addition of the line-of-sight signal from the satellite and the Rayleigh

distributed multipath signal. The slow fades of the direct component of the signal due

to vegetation appear to be lognormally distributed. The overall shadowed fading signal

appears to have a VS distribution due to a phasor addition of the lognormally fading

line-of-sight signal and the Rayleigh distributed multipath signal. The overall
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cumulative distribution of the signal received by a partially shadowed mobile can be well

approximated as a combination of a Rician and a VS distribution [25].

Using a total probability approach, the overall cumulative distribution can be separated

into a Rician portion for the unshadowed mobile and a VS portion for the shadowed

mobile. The Rician portion of the distribution is completely defined by K, the ratio of

the power in the diffuse Rayleigh component of the signal to the power in the

line-of-sight component. The VS portion of the distribution is defined by the mean and

standard deviation of the lognormal component (lJ_, a_) and K, the ratio of the power

in the diffuse Rayleigh component to the power in the unshadowed line-of-sight

component. The parameter _' is related to the parameter b0 in Equation 2.4-13 by

K = b0 + 3dB. All of these parameters (K, K, i_R, and oR ) are needed to describe a

received LMSS signal and are necessary inputs to a simulator.

In the VT simulator, the K parameter of the Rician portion of the distribution is used

to determine the inputs to a software Rayleigh generator. The output of the Rayleigh

generator is then added to a constant to produce a Rician distribution with the proper

K value. The result is a software-generated Rician signal that represents the

unshadowed portion of the data received by the mobile.

Generation of the shadowed mobile signal is more complicated because three parameters

are needed to specify the VS distribution. Here, the g parameter of the Rayleigh portion

of the VS distribution is used to determine the inputs to a software Rayleigh generator

that produces the rapidly varying component of the vegetatively shadowed signal. The

mean and standard deviation of the lognormal portion of the VS distribution are used

to generate the slow fades. The mean and standard deviation are supplied to a software

generator that scales an existing universal data set to produce a slowly varying signal.
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This slowly varying lognormally distributed signal represents the slowly varying

component of the vegetatively shadowed signal. The slow and fast fading components

of the shadowed signal are added as complex voltages to finally generate the total

shadowed signal.

The total data set for the signal received by the mobile is created by concatenating

shadowed and unshadowed data sets. The percentage of shadowed data used to

construct the total data set corresponds exactly to the percentage of shadowing of the

line-of-sight signal encountered by the mobile. The data set represents received signal

level as a function of wavelengths traveled by the mobile. It may be analyzed for any

dynamic fade statistics after construction.

In Section 4.2, we show that a LMSS signal can indeed be separated into its component

parts. Section ,-1.3 discusses development of the initial Rayleigh generator used to

generate the fast varying component of both shadowed and unshadowed mobile signals.

Section 4.4 discusses development and background work for the lognormal signal

generator used to generate the slowly varying component of the vegetatively shadowed

mobile signal. Section 4.5 combines the Rayleigh generator and the lognormal signal

generator to create the overall simulator.
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4.2 Separation of the Data into Component Parts

Development of the VT simulator relies on the assumptions that an unshadowed mobile

signal can be broken into Rayleigh and constant components and that a shadowed

mobile signal can be broken into Rayleigh and lognormally distributed components. In

this section, we show this is true by separating measured signals into a fast varying

component which is Rayleigh distributed in magnitude (for both shadowed and

unshadowed conditions) and uniformly distributed in phase (for unshadowed only) and

a slowly varying component which is lognormally distributed (for shadowed conditions).

4.2.1 Data Base for Simulator Development

To verify that an LMSS signal can be separated into component parts, a data base was

required. (The data are also required later to create a universal data set for generating

slowly varying fades.) The data set which we used for these purposes was generously

supplied by Wolfhard Vogel of the University of Texas at Austin. He provided 37

minutes of data from his November 1984, balloon measurements. This data set contains

both shadowed and unshadowed measurements and is ideal for simulator development.

The data were processed so that it provides records of signal level as a function of

wavelengths traveled. Appendix A discusses the processing in detail.
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4.2.2 Slowly Varying, Lognormal Component

The slowly varying component of the fading signal was extracted by representing the

total received mobile signal as a complex voltage and taking a running average.

Essentially this corresponds to low-pass filtering the data to obtain the slowly varying

signal component. The running average is performed by sliding an averaging window

across the data. The average of all the points within the window determine the value for

the point at the center of the window. As the window slides across the data, the fast

varying diffuse component of the data is removed by the averaging process. The result

is a slowly varying signal that corresponds to the direct component of the signal and the

mean of the original signal. Figure 4.2-1 shows 100 wavelengths of Vogel's data with

vegetative shadowing present and the running average (with a 20 wavelength long

window) of the data superimposed.

The size of the window chosen for the running average for all of Vogel's data is 20

wavelengths. This value was selected by trial and error, but an illustration should show

the validity of the choice. Figure 4.2-2 presents the same 100 wavelengths of data as

Figure 4.2-1, but now running averages with windows of 10, 20, 40, and 80 wavelengths

are superimposed. The 10 wavelength long running average has not yet removed the fast

varying component of the signal; running averages with less than I0 wavelength

windows contain even more of the fast varying component. The 40 and 80 wavelength

(and anything longer) running averages have lost the integrity of the fade. The 20

wavelength running average is the only one which adequately removes the fast varying

component of the signal and retains the integrity of the fade. Windows from

approximately 15 wavelengths to 30 wavelengths appear adequate and the overall data

separation process was found to be relatively insensitive to window lengths between
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these. Examination of a number of fades like those in Figure 4.2-1 and the insensitivity

of the separation process to windows between 15 and 30 wavelengths led to a choice of

a 20 wavelength window for removing the slow fades from Vogel's data.

After the window size was determined for the running average, portions of the data were

processed to remove the slowly fading component. The output of the running average,

which corresponds to the direct component of the LMSS signal (i.e. the averaging

process removes the diffuse component) was then processed to determine the cumulative

distribution. In order to determine the distribution of the output of the running average

during vegetative shadowing, a threshold had to be set where we considered vegetative

shadowing of the direct component to be present. Shadowing was considered to be

present when the data output of the running average process fell below a threshold of

-2 dB. Vegetative shadowing of the direct component was considered to be absent above

this threshold. Again, this number was chosen by examining at the data. Because of

transmitter power fluctuations, receiver fluctuations, data processing errors, or a variety

of other reasons, the signal output by the running average tended to drift around the 0

dB threshold (sometimes in excess of I dB) when no shadowing was present. Ideally, the

direct component should remain at 0 dB when no shadowing is present. If the threshold

for determining the presence of shadowing is set too low, much of the unshadowed data

will be considered shadowed because of the drifting of the recorded signal mean. Setting

the threshold to -2 dB tended to eliminate nearly all the unshadowed data that would

otherwise be considered shadowed with a lower threshold. The value was not set any

higher so that a minimum of shadowed data falling below the -2 dB threshold would be

elinfinated from being considered shadowed.
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After setting the threshold for shadowing, the distribution of the shadowed portion of

the direct component output by the running average was tested. To test the distribution

of the direct component, when vegetative shadowing is present, only data output by the

running average falling below the -2 dB theshotd are considered. All other data are

excluded from the distribution. It was earlier assumed that the distribution of the

vegetatively shadowed direct component was lognormal. Figure 4.2-3 shows the

distribution of one minute of Vogel's data where much vegetative shadowing was

present. It also shows the distribution of the running average of the shadowed data

extracted from this data set. Note the output of the running average, which corresponds

to the direct component of the LMSS signal, follows a lognormal distribution very well

when vegetative shadowing is present. All other data sets tested also showed the

vegetatively shadowed direct component of the signal to follow a lognormal distribution,

justifying our earlier assumption of a lognormally-distributed vegetatively-shadowed

direct component.

We did not examine the distribution of the direct component phase because earlier

processing (described in Appendix A) forced the phase to be essentially zero. The

absolute value of the phase of the direct component is, we believe, fairly unimportant in

our work because it is essentially constant relative to the phase of the diffuse component

and thus plays little role in the fading dynamics of the overall signal.

The program for performing running averages on Vogel's data is called RUNA2.F and

a listing may be found in Appendix B.
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4.2.3 Fast Varying, Rayleigh Component

Implicit in the development of the VT simulator is the assumption that the fast varying

diffuse component of the LMSS signal is Rayleigh distributed in magnitude and

uniformly distributed in phase for both vegetatively shadowed and unshadowed

conditions. To test this assumption, we extracted the fast varying component of the

signal by subtracting the running average from each member of the original data set.

To perform this subtraction, we put both data sets into complex voltage form and took

the difference on a point-by-point basis. The result of this subtraction process is the

total mobile signal less the direct component, and it corresponds to the fast varying

diffuse component of the signal.

We tested the result of the subtraction process for distribution for both shadowed and

unshadowed conditions. As before, the threshold for shadowing was set by the running

average at -2 dB. Figure 4.2-4 shows the distribution of unshadowed data set TD090517;

note that it appears to be Rician distributed because the data is unshadowed. Figure

4.2-5 shows on Rayleigh probability paper the distribution of 4096 points of the

magnitude of the diffuse component extracted from data set TD090517. Note it plots

as a straight line on the Rayleigh paper and is thus Rayleigh distributed. Figure 4.2-6

shows the probability density (density is used again here instead of a cumulative

distribution because a uniform density is more easily recognized when plotted in this

manner) of the phase of the diffuse component extracted from 4096 points of data set

TD090517. Note the density function plots close to a horizontal straight line, indicating

that the phase of the diffuse component is uniformly distributed. We examined each of

the 16 unshadowed data sets supplied by Vogel and found the diffuse component in each

data set to be Rayleigh distributed in magnitude and uniformly distributed in phase.
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We, therefore, conclude that this behavior is a general characteristic of the diffuse

component of the received LMSS signal.

Figure 4.2-7 shows the distribution of shadowed data set TD091540. Figure 4.2-8 shows

on Rayleigh paper the distribution of the magnitude of the diffuse component extracted

only from shadowed data contained in data set TD091540. Note again it plots as a

straight line on the Rayleigh paper indicating it is Rayleigh distributed. Figure 4.2-9

shows the probability density of 8096 points of the phase of the diffuse component

extracted from data set TD091540. It is not uniformly distributed. The phase tends to

group around 0 and 180 degrees in a bimodal distribution. We presently have no

explanation for this behavior, but every shadowed data set examined behaves in the

same manner (both in magnitude and phase), independent of the fade depth.

Because under vegetatively shadowed conditions the magnitude of the diffuse component

was found to be Rayleigh distributed and the phase was found to behave in a consistent

manner (although not uniformly distributed), we chose to initially ignore the nonuniform

distribution of the phase in our initial simulator development. It turns out that the

nonuniformly distributed phase of the extracted diffuse component for the shadowed

mobile is important. Although not uniformly distributed, the predictable behavior of the

phase independent of fade depths allows it to be incorporated to improve the simulator's

performance.

The programs for separating the fast varying fades from the overall data set through use

ofthe running average of the data set is called RICSE3.F and a listing may be found in

Appendix B.
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4.3 Generation of the Rapidly

LMSS Signal

Varying Component of the

The fast varying component of the LMSS signal due to multipath fades is, as was shown

in Section ,1.2, Rayleigh distributed in magnitude and uniformly distributed in phase (at

least for the unshadowed case). To create this component of the signal, the VT

simulator initially generates a diffuse process exactly like that of the CRC and the JPL

simulators. This diffuse process generator, or Rayleigh generator, is covered extensively

in the literature and may be found in various forms in [2,5,10,13,14,15]. Figure 4.3-1

shows a block diagram of the Rayleigh generator. All of the Rayleigh generators

reviewed, whether developed in hardware or software, are constructed following the

basic building blocks in Figure 4.3-1. Our original simulator follows the same block

diagram.

To generate the diffuse process, the spectrum of the filters in Figure 4.3-1 must be

determined. To determine the spectrum of these filters, the nature of the diffuse process

must be examined.

as

Rewriting Equation 2.4-1, the diffuse component may be expressed

N

Rat]. = Y. A t exp[yt0i] (4.3-1)
l=1

where A, and _, are the amplitude and phase (phase measured with respect to the direct

component) respectively of component i of the scattered wave. Following [15], this is

also equivalent to

Rag = Nc(t) + jNs(t ) = N(t)exp[j0(t)] (4.3-2)
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where Nc(t) and Ns(t) are colored Gaussian noise processes, N(t) is the Rayleigh

distributed amplitude of the diffuse component, and 0(t) is the uniformly distributed

phase of the diffuse component. The Rayleigh generator attempts to produce the

processes Nc(O and Ns(t) to generate R_,z , but to generate such processes, the

autocorrelation or power spectral density of the process must be known.

The power spectral density of the diffuse process is developed in detail in [12]. In

general, it is given by

SO = p(=) g(a) + p(y) g(r)

v'f2 _ f2

e.= cos-10C/fr.)

y = - cos-I_%,)

f,n = Vf_.

(4.3-3)

where p(ct) is the intensity function of the diffuse waves, g(a) is the power gain of the

antenna, f is the frequency, V is the velocity of the mobile, and _. is the wavelength at

the frequency of operation. For an omnidirectional antenna, which is the case we are

interested in, this reduces to

f.,= V/_.

(4.3-4)

where V is the velocity of the mobile, _. is the wavelength at the frequency of operation,

f. The spectrum of Equation ,.1.3-4 appears as shown in Figure 4.3-2.
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The power spectral density for an omnidirectional antenna given by Equation 4.3-4

determines the spectrum of the shaping filters shown as building blocks in Figure 4.3-1.

The frequency response of these filters is given by x/_'_-'. ARer defining the spectrum

of the shaping filters, the diffuse process is generated in software as shown in Figure

4.3-3. The complex white Gaussian noise processes, n,(t) and n2(t), input to the complex

filter are independent. The output .of the diffuse process generator, or Rayleigh

generator, is Rayleigh distributed in magnitude, N(t), and uniformly distributed in phase,

0(t). This approach to generating the diffuse process envelope is the software equivalent

to that of Figure 4.3-1.

The distribution of the magnitude of 8192 points of the output of the VT Rayleigh

generator, generated as shown in Figure 4.3-3, is shown in Figure 4.3-4 on Rayleigh

probability paper. Note it appears as a straight line, hence the magnitude of the data

output by the Rayleigh generator is indeed Rayleigh distributed. Figure 4.3-5 sl'iows the

density (a density function is used here so that a uniform density can be easily

recognized) of 8192 points of the phase output by the Rayleigh generator. The phase

closely approximates a uniform distribution.

Figures 4.3-4 and 4.3-5 show that the VT Rayleigh generator has the proper cumulative

distributions for magnitude and phase, but it must also be tested for dynamic behavior.

To test the dynamic behavior of the VT Rayleigh generator, its output was tested for

mean fade duration against the theoretical curve found in [5]. Data were generated at

the rate of I0,000 points per second with a vehicle velocity of 55 mph and an operating

frequency of 869 MHz to produce 32768 data points. The data were then normalized

to signal level as a function of wavelengths traveled, and subsequently tested for mean

fade duration. Figure 4.3-6 shows mean fade duration of the data output by the VT
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Rayleigh generator compared to the theoretical curve [5]. The close agreement indicates

the dynamic output of the Rayleigh generator agrees with theory.

No listing of the Rayleigh generator code at this stage of evolution is provided because

of subsequent improvements discussed in Chapter 5.

4.4 Generation of the Slowly

LMSS Signal

Varying Component of the

It was shown in Section 4.2 that the slowly varying direct component of the LMSS

signal due to vegetative fades is lognormally distributed. The VT simulator attempts to

generate these slow fades by scaling an existing universal data set of slow fades

extracted from Vogel's November 1984, balloon data. The universal data set is scaled

in mean and standard deviation to match the distribution of the desired data set. The

result is an exact match (or as close as possible) between the distribution of the scaled

universal data set and the desired data set, and, we hope, a match between the dynamics

of the data set also.

The background and some justification for this scaling procedure (scaled attenuation))

are presented in Section 4.4.1. The VT simulator version of this scaling procedure (called

the lognormal signal generator) is presented in Section 4.4.2.

IV. SIMULATOR DEVELOPMENT 81



100 , , ,, i , , _ , i , , , i i ,",_ i i, , , , i , , , , i ,', , ,
i,

30-

• _ THEORETICAL

_ 0.3

_ o._- _ .
,.u 0.07-

o.os-
0.031"o

0.021 ,,,,
0.01 I, ,,, I i, ,,I ,.,,, !,,,, I,,,, I ,,,

-25 -20 -I 5 -I0 -5 0 5 0

THRESHOLD RELATIVE TO LINE
OF SIGHT LEVEL (dB)

Figure 4.3-6. Calculated mean fade duration of" VT Rayleigh signal compared with
theoretical result [5].

IV. SIMULATOR DEVELOPMENT 82



4.4.1 Background for Scaled Attenuation

All of the background for the scaling procedure used in the VT lognormal generator was

drawn from Bottomley's work [6]. The scaling procedure developed by Bottomley was

developed from rain attenuation research in which attenuation (in dB) is lognormally

distributed (i.e. the log of attenuation is normally distributed). In LMSS, vegetative

shadowing of the direct component of a received mobile signal is lognormally distributed

(i.e. attenuation, in dB, is normally distributed). Because the time behavior of

attenuation in these two cases appears similar, although rain attenuation is lognormally

distributed and vegetative attenuation of the direct component of an LMSS signal is

normally distributed, we decided to investigate the application of the scaling procedure

in [6] to LMSS.

The derivation by Bottomley starts with the assumption that rain attenuation follows the

first-order differential equation for a Markov process. To find the necessary parameters

of the model, rain attenuation (in dB) is assumed to be lognormally distributed and the

rate of change of attenuation is assumed to increase with attenuation level. This leads

to a known solution of the Fokker-Planck equation which provides formulas for the

model parameters. Because attenuation (in dB) is assumed to be lognormally

distributed, Bottomley works with a process proportional to the log of attenuation,

called X. This is stated as

X/k ) = A XCk_ i) + B NCk) (4.4-1)

where

X(k ) = k th sample of the log of attenuation, attenuation in dB
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N(k ) = white, Gaussian, zero-mean, unity variance input process

A = exp( - 13At)

B--4?=-5r

At = t(k) - t(k_ l) -- sampling period in seconds

where E { ) indicates expected value and a is attenuation in dB

(4.4-2)

aL = standard deviation of the log of attenuation not including unshadowed

data, attenuation expressed in dB

These equations imply that for discrete samples of rain attenuation, the log of each

attenuation sample is a function of the log of the previous value and a random variable

generated by a stochastic input process.

One way to simplify the model given in Equations 4.4-1 and 4.4-2 is to assume 13, given

by Equation 4.4-2, is constant. This is equivalent to fixing the A and B parameters of

Equation 4.4-1, but not the standard deviation of the input process N. If13 is fixed, only

mean laz, standard deviation _sL, and the number of points vary between different data

sets. Since statistically, only the mean and standard deviation of the log of attenuation

change, the log of rain attenuation in any two data sets can be related both statistically

and on a point-to-point basis by

L2 = (_L2/OLI)(LI - laLI) + lat2 (4.4-3)

where
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L2 = log of attenuation in data set 2, attenuation in dB

L 1 = log of attenuation in data set 1, attenuation in dB

OL2 -- standard deviation of the log of attenuation not including clear weather

for data set 2, attenuation in dB

OL+ = standard deviation of the log of attenuation not including clear weather

for data set I, attenuation in dB

laL2 = mean of the log of attenuation not including clear weather for data set 2,

attenuation in dB

P'L1 ---- mean of the log of attenuation not including clear weather for data set 1,

attenuation in dB

Although the derivation in [6] was performed specifically for rain attenuation studies,

we believe it can be easily altered for application to LMSS. To apply the derivation to

the slowly varying direct component of the LMSS signal, we must work directly with

attenuation instead of with the log of attenuation as Bottomley did in his derivation.

Bottomley assumes that attenuation (in dB) is lognormally distributed and that the rate

of change of attenuation increases with attenuation level to obtain his model equations.

If we assume, for the vegetatively shadowed direct component of the LMSS signal, that

attenuation (in dB) is normally distributed (or, equivalently, attenuation as a ratio is

lognormally distributed) and the rate of change of attenuation (given as a ratio, not in

dB) increases with attenuation level, then we obtain equations almost identical to those

previously given in Equations 4.4-1 and 4.4-2. These equations are stated as
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ct(k)= A ct(k_i)+ B N(k) (4.4-4)

where

tt(k) = discrete values of attenuation (in dB) occurring at time tk where

t(k) - t(k__)= At

N(k ) = white, Gaussian, zero-mean, unity variance input process

A = exp( - 13at)

8-- ,/T77-

At = sampling period in seconds

J3 = E{('/(t + At) - V(t))2/V(t))/(2o2 At) (4.4-5)

where E ( } indicates expected value and y is proportional to attenuation

expressed as a ratio

o = standard deviation of attenuation (in dB) not including unshadowed data

These equations imply that for discrete samples of attenuation, each attenuation sample

is a function of the previous value and a random variable generated by a stochastic input

process. The assumption that attenuation (in dB) of the vegetatively shadowed direct

component of an LMSS signal is normally distributed was shown to be valid in Section

4.2. The assumption that the rate of change of attenuation increases with increasing

attenuation level also appears to be valid for the data we analyzed.
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If we next go through the same process as Bottomley and fix 13, we can relate the

attenuation in any two data sets both statistically and on a point-to-point basis by

ct2 = (cr2/ol)(ctl - lal) + la2 (4.4.6)

where

a2 = attenuation (in dB) in data set 2

ctl = attenuation (in dB) in data set 1

0 2 = standard deviation of attenuation (in dB) not including clear weather

for data set 2

01 = standard deviation of attenuation (in dB) not including clear weather

for data set 1

I.t2 = mean of attenuation (in dB) not including clear weather for data set 2

laI = mean of attenuation (hi dB) not including clear weather for data set 1

Thus if we assume for the vegetatively shadowed direct component of an LMSS signal

that

1. Attenuation follows a Markov process

2. Attenuation (in dB) is normally distributed

3. The rate of change of attenuation increases with attenuation level

4. The dynamic parameter 13can be fixed
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then we can relate any two model data sets (of" the slowly varying, lognormally

distributed, vegetatively shadowed, direct component of the LMSS signal) by a linear

scaling procedure using Equation 4.4-6. This in turn assumes that both data sets use the

same random number sequence. This implies that we only need a s_ngle model data set

which we can scale by Equation 4.4-6 to produce any new data set of the slowly varying

component of the LMSS signal.

4.4.2 Lognormal Signal Generator

A block diagram of the lognormal signal generator used in the VT simulator to produce

the slowly varying, lognormally distributed, vegetatively shadowed direct component of

the LMSS signal is shown in Figure 4.4-1. The requirements for the lognormal signal

generator are a universal data set of vegetatively shadowed direct component, the mean

and standard deviation of the data set to be generated, and the number of shadowed data

points to generate. The lognormal signal generator scales the lognormal distributed

universal data set according to Equation 4.4-6 to produce a new lognormal data set (with

a distribution like those shown in Figure 2.4-1) with the desired mean and standard

deviation. The result is a scaled version ofthe universal data set that we hope possesses

the desired dynamic characteristics of the vegetatively shadowed direct component of the

signal.

The universal data set used in the lognormal signal generator was derived from the 869

MHz, November 1984, balloon experiment data supplied by Vogel. The data base was

constructed by taking a 20 wavelength long running average of all the data supplied.
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Data output by the running average and falling below a -2 dB threshold were considered

to be shadowed and were used to construct the universal data base. The reasons for

choosing a 20 wavelength window for the running average and a -2 dB threshold for

shadowing are discussed in 4,2.2. The universal data base constructed from this process

contains data corresponding to 4.5 km of travel and consists of purely vegetatively

shadowed direct component of the signal with points spaced 0. l wavelengths apart. The

distribution of this data set is shown in Figure 4.4-2. Note it is lognormally distributed

with a mean and standard deviation of-4.1 dB and 2.5 dB respectively. This data base

serves as the universal data base to be scaled by the Iognormal generator, which assumes

that the dynamic behavior of the data base is universal.

4.5 Total Signal Generator

The total fading envelope of the LMSS signal is generated by combining the Rayleigh

signal generator and the lognormal signal generator in the proper manner to create the

VT simulator. A block diagram of this construction is shown in Figure 4.5-]. The

inputs to the simulator are the number o£ points to generate (the spacing between points

is set to 0.1 wavelengths), the percent shadowing, the value of K for the unshadowed

Rician data, the value of K for the multipath component of the shadowed data, and the

mean and standard deviation of the lognormal component of the shadowed data. The

output of the simulator is data spaced 0.l wavelengths apart that represents the total

LMSS fading signal.
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To construct the shadowed data, the complex voltage of the signal output by the

Rayleigh generator is added (phasor addition) to the complex voltage of the scaled signal

output by the lognormal signal generator. This corresponds exactly to Equation 2.3-3,

restated below for vegetatively shadowed conditions where the difftise component of the

signal is generated by the Rayleigh generator and the lognormally distributed component

is generated by the lognormal signal generator.

R 1 "_ Rai r + Rai f (4.5-1)

The magnitude of the signal output by the Rayleigh generator is determined by input

parameter K while the scaling factors for the lognormal signal generator are determined

by the input parameters la_ and as. The total shadowed data set created by the simulator

adding the outputs of the Rayleigh generator and the lognormal generator has a VS

distribution. The distribution of a sample of vegetatively shadowed data output by the

simulator with input parameters K = - 12 dB, gs = - 8. I dB, and crR -- 2.5 dB is shown in

Figure 4.5-2. Note it appears similar to the plot of a VS distribution shown in Figure

2.4-5.

Construction of the unshadowed data is performed by temporarily suspending the

operation of the lognormal signal generator while it outputs a constant. The output of

the Rayleigh generator is added as a complex voltage to this constant to produce

unshadowed data. Again this corresponds exactly to Equation 2.3-3, but this time for

unshadowed conditions where the diffuse component of the signal is generated by the

Rayleigh generator and the constant direct component of the signal is generated by the

lognormal signal generator (whose normal mode of operation has been temporarily

suspended). The magnitude of the signal output by the Rayleigh generator is determined

by the parameter K; the constant added to the Rayleigh generator signal is arbitrarily
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chosen to be 1.0. The total unshadowed data set created by adding the output of the

Rayleigh generator to a constant has a Rician distribution. The distribution of a sample

of unshadowed data output by the simulator with input parameter K = - l I dB is shown

in Figure 4.5-3 along with a theoretical Rician curve with the same K value.

Once the shadowed and unshadowed data sets are generated, they are concatenated in

the proper proportion to generate the total data set. IfNPTS is the total number of data

points desired in the data set and p is the percentage of vegetative shadowing present,

the total number of shadowed data points is p(NPTS) and the total number of

unshadowed data points is (l - p)(NPTS). Note NPTS = p(NPTS) + (l - p)(NPTS).

This corresponds to a total probability approach to constructing the overall data set by

concatenating shadowed and unshadowed data sets.

4.6 Testhtg the Simulator

The VT simulator was first tested on unshadowed data since this required knowledge of

the fewest number of variables. It was then tested on shadowed data. The initial tests

were performed using the same November 1984 balloon data that was used to verify the

separability of the data into component parts and to construct the lognormal data base.

Using the Vogel data to verify the VT simulator operation for unshadowed data is valid

because operation of this portion of the simulator was not derived from the data.

Verification of the operation of the simulator for shadowed data, however, is not entirely

valid here because the data used to generate the universal lognormal data base is the
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same data used to verify the simulator for the shadowed mode of operation.

Comparison of the simulator output to the Vogel data for shadowed data is performed

anyway to see if the Rayleigh generator output when added to the lognormal signal

generator output produces a signal with the proper dynamic behavior.

4.6.1 Unshadowed Data

The performance of the simulator was tested under unshadowed conditions by matching

its distribution to the first eaght 1.024 second files of Vogel's data set RB093413. Figure

4.6-1 shows the distribution of the Vogel data and the distribution of the simulator

output using a K value of-26 dB for input. Note that the fades in this data set are under

1 dB and insignificant, but they are typical of the fades encountered in the unshadowed

data supplied by Vogel and they do serve as an adequate test of the simulator for

unshadowed data.

Once the distributions were matched, the fade duration characteristics of the actual and

simulated data sets were compared. Figure 4.6-2 shows a cumulative distribution plot

of fade durations at -0.2 dB and -0.5 dB thresholds. Figure 4.6-3 shows a cumulative

distribution of rise durations (the opposite of fade durations) at + 0.2 dB and + 0.5 dB

thresholds. Table 4.6-1 combines the information in the plots into fade and rise duration

tables. The match between the fade and rise durations of the simulator and those of the

data is fair, but we believed they could be improved. The improved unshadowed data

simulator is discussed in Chapter 5.

IV. SIMULATOR DEVELOPMENT 97



c'_Z -16

IJJ _.1
>
uJ -20

n- -24

0.0

| i

'I , I " i" ' I ' 1 ' I '' J ' '1 ' I i

MEASURED DATA

VT SIMULATOR OUTPUT

K- -26 dB

, I I I , I , I , I , 1 , I , I , I ,

0.1 0.5 I 5 I0 30 ,50 70 90 99 99.9

% TIME RECEIVED SIGNAL IS GREATER
THAN ORDINATE

.I

N

w

m

Figure 4.6-1. Cumulative distribution plot of the first eight 1.024 second records of
data set RB093413 and the VT simulator match to it.

IV. SIMULATOR DEVELOPMENT 98



t/)
...-I
iii
>
i,i
_..I

Z

ILl
tad

X
t.l_l

t/)
i11
c-_
<_
i1

I1
C9

d
Z

._.l

<1;
I----
C9
I---

1000-

100-

10-

RICEK--26 dB

I- I I

.01 .I I 10

FADE DURATION (WAVELENGTHS)

Figure 4.6-2. Cumulative fade duration distribution at two thresholds comparing
experimental and simulator predicted fades for the first eight 1.024 second files of
Vogel's unshadowed data set RB093413.

IV. SIMULATOR DEVELOPMENT 99



_n lOOO-
ill
%>
Ill

rr_
%3

lO0-

x

_ 10-

+0.2 dB __,,

+0.5 dB ...... _*\_

--MEASURED _ i

O I- I J z

"" .01 .1 1 10

FADE DURATION (WAVELENGTHS)

Figure 4.6-3. Cumulative rise duration distribution at two thresholds comparing
experimental and simulator predicted fades for the first eight 1.024 second files of
Vogel's unshadowed data set RB093413.

IV. SIMULATOR DEVELOPMENT I00



Table 4.6-I. Comparison of experimental and Rice generator predicted rises and
fades for first eight 1.024 second files of Vogel's data set RB093413.

RISE THRESHOLD 0 .5 0 •2

RISE DURATION NO. EVENTS NO. EVE,NTS

(WAVELENGTHS} DATA SIM DATA SIN

0.0 - 0.I

0.I - 0.2

0.2 - 0.4

0.4 - 0.8

0.8 - 1.6

1.6 - 3.2

3.2 - 6.4

5 6

16 ii

19 31

14 12

I

8 15

28 17

48 62

57 i01

24 13

8

1

FADE THRESHOLD - 0.2 -0.5

FADE DURATION NO. EVENTS NO. EVENTS

(WAVELENGTHS} DATA SIN DATA SIN

0.0 - 0.I

0.I - 0.2

0.2 - 0.4

0.4 - 0.8

0.8 - 1.6

1.6 - 3.2

3.2 - 6.4

8 7

28 15

54 54

48 122

24 7

4 I

3

8 7

I0 15

25 41

8 II

3
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4.6.2 Shadowed Data

The simulator was tested under vegetatively shadowed conditions by matching the

distribution of the output of the simulator to that of a shadowed Vogel data set. After

matching the distributions, the fade duration characteristics of the actual and the

simulated data sets were compared. Unfortunately, at this point in time, we encountered

a crash of the Harris 800 computer used for simulation and the entire hard disk used by

the computer was destroyed. In the crash, recent programs and data that had not yet

been backed-up were lost. For this reason, no figures of the match between data sets

were developed. What we did observe before the computer crash was that although the

cumulative distribution of the simulated and empirical data sets matched, the fade

duration behavior did not match well. The fades output by the simulator tended to

group in large numbers in the low duration bins (0.0-0.1, 0.1-0.2, and 0.2-0.4 wavelength

bins) while the fades of the empirical data set were more widely distributed.

Consequently, although the total number of fading points matched (i.e. the cumulative

distributions matched), the dynamic behavior of the simulated and empirical data sets

did not match acceptably. Fortunately, we were able to improve the dynamic behavior

of the simulator for vegetatively shadowed data so we chose not to regenerate the

software and data lost in the computer crash (important previous programs and data

were not lost because they had been backed-up).
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V. IMPROVED SIMULATOR

The initial version of the VT simulator had, we felt, unacceptable dynamic characteristics

when generating vegetatively shadowed data. We felt that the dynamics of the simulator

could be improved when generating the shadowed data and also when generating the

unshadowed data. These improvements were made by altering the Rayleigh generator

to run using empirical data.

In Section 5.1, refinement of the Rayleigh generator is discussed. The Rayleigh

generator is refined for use in both shadowed and unshadowed conditions. Section 5.2

introduces a new, independent, data set supplied by Vogel and employs it to verify the

operation of the VT simulator.
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5.1 Refined Rayleigh Generator

The initial Rayleigh generator constructed, because of its purely mathematical deviation,

is very artificial in its generation of the diffuse process. We believe that a Rayleigh

generator based on actual LMSS data would produce improved simulator output for

both shadowed and unshadowed conditions. This section discusses this data-derived

Rayleigh generator for both shadowed and unshadowed conditions.

5.1.1 Unshadowed Rayleigh Generator

In Section 4.1.3, we showed that the total unshadowed mobile signal could be separated

into a constant direct component and a diffuse componcnt that is Rayleigh distributed

in magnitude and uniformly distributed in phase. The Rayleigh generator we developed

attempts to construct this diffuse component of the signal. Why attempt artificially to

construct the diffuse component when we have already extracted it from the data? The

data extracted from the unshadowed data sets are properly distributed in magnitude and

phase to serve as Rayleigh generated data. It also has the proper dynamic behavior

since it is empirical data (assuming the data provided by Vogel is valid and accurate).

So in place of the artificial Rayleigh generator, we can place a generator that extracts

the diffuse component of empirical data to produce the diffuse process for the simulator.

This is essentially what is done in the improved VT Rayleigh generator, but instead of

separating the data every time the simulator is run, a large data base of diffuse data is

constructed from the unshadowed Vogel data. The improved generator draws from this
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data base and the input value K or K, precisely like the initial generator, to output data

of the proper magnitude. As far as the overall simulator is concerned, the improved

Rayleigh generator operates like its predecessor, but now the Rayleigh generator is based

on empirical data. Verification of this improved simulator is presented in 5.2.

5.1.2 Shadowed Rayleigh Generator

The improved Rayleigh generator discussed in Section 5.1.1 was used in conjunction

with the lognormal generator to produce vegetatively shadowed data. Again, as with the

initial Rayleigh generator, the dynamics of the data output by the simulator were not

acceptable. As with the initial Rayleigh generator, the vegetatively shadowed data

output by the simulator tended to have a large number of fades in the short duration

bins which the empirical data did not have. So although the cumulative distributions

of measured and empirical vegetatively shadowed data sets could be well matched with

the improved simulator, the dynamic behavior could not.

Our inability to generate vegetatively shadowed data with the proper dynamic behavior

using the initial and improved Rayleigh generators results from neglecting the

nonuniformly distributed phase of the diffuse component found in Section 4.2.3. In

Section 4.2.3, we found that the magnitude of the diffuse component extracted from the

shadowed empirical data is Rayleigh distributed in magnitude, but it is not uniformly

distributed in phase. The Rayleigh generator we have been using to generate the diffuse

component for both unshadowed and shadowed data outputs data with a uniformly
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distributed phase. This is appropriate for unshadowed data, but not for the shadowed

data which was found to have a nonuniformly distributed phase.

Although the phase of the diffuse component of the shadowed data' was found to have

a bimodal distribution instead of a uniform distribution (whether the phase is actually

nonuniformly distributed or if it appears so because of our processing of the data is

impossible to tell), it was found to behave in a predictable manner. In all of the

shadowed data examined, the magnitude of the diffuse component of the data was found

to be Ray[eigh distributed and the diffuse component phase was found to have a

consistent distribution (the density of the phase was shown in Figure 4.2-9). These

distributions were found to be independent of the fade depths, depending only on the

fact that vegetative fading is present. Because of this uniform behavior, we decided to

extract the diffuse component of the vegetatively shadowed data and use it for input to

the Rayleigh generator precisely as we did in Section 5.1.I for unshadowed data. The

resulting Rayleigh generator, when used in coniunction with the Iognormal signal

generator has dynamic behavior much closer to that of the empirical data. Verification

of this improved dynamic behavior is presented in Section 5.2.

5.1.3 Total Improved Rayleigh Generator

]'he final version of the Rayleigh generator incorporates two data bases, one for

unshadowed data and one for shadowed data. The generator still operates similar to the

initial Rayleigh generator, but now it draws data from the unshadowed diffuse data base

when generating unshadowed data and it draws data from the shadowed diffuse data
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base when generating shadowed data. The simulator configuration and operation is

exactly like the initial configuration, but now additional data bases have been added.

The final configuration is shown in Figure 5.1-1.

The program used to implement the final simulator configuration is called SIGGE2.F

and a listing may be found in Appendix B.

5.2 Verification of Simulator Using the November 1984,

Balloon Data

The final version of the simulator, shown in Figure 5.1-1, was first tested on the original

data set received from Vogel. The results of comparisons between the simulator output

and these data sets are discussed in this section.

To test the improved simulator for operation under unshadowed conditions, we chose

to try to match its output to the entire unshadowed data set TD093523. This data set

is not contained in the unshadowed Rayleigh data base. The simulator output was first

matched to the cumulative distribution of the data precisely as in Section 4.6. A Rician

K of-28 dB gave the best match between simulator output and data distributions.

Figure 5.2-1 compares the cumulative fade duration of the simulated and empirical data.

Comparing this figure to Figure 4.6-3 shows that the performance of the simulator for

unshadowed conditions has been improved by using data to drive the Rayleigh

generator.
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To test the improved simulator for operation under shadowed conditions, we chose to

match the distribution of its output to an entire data set containing both shadowed and

unshadowed data. Data set TD091759 was chosen for this purpose. It contains 46.6%

of vegetatively shadowed data. Figure 5.2-2 shows the distribution of this data set and

our match to it. The simulator output is matched to the data by a fairly complex

procedure outlined in Appendix C. The procedure outlined in Appendix C describes a

method for determining the simulator input parameters K, K, _R, and aR assuming the

percent shadowing is known. If the percent shadowing cannot be estimated, a trial and

error method must be used to determine the simulator inputs.

Once the distribution between simulator output and data set TD091759 were matched,

their fade duration characteristics were compared. Figure 5.2-3 shows a cumulative plot

of fade durations for both the empirical data and the simulator output at five different

fade thresholds. The good agreement between the empirical and simulated data indicates

proper operation of our simulator both statistically and dynamically, at least for the

Vogel, 1984 balloon experiment data. The real test of the simulator's universal

application follows in the next section as its distribution is first matched to a totally

unrelated data set and then tested for its dynamic match to the data set as is discussed

in the next section.
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5.3 Verification of Simulator Using an Independent Data

Set

A new data set independent of the November 1984, Balloon data was required to

adequately test the simulator. This section introduces the new data set and uses the data

set to verify the operation of the VT simulator.

5.3.1 The Independent Data Set

The new "data set used to verify the operation of our simulator was generously supplied

by Vogel and Goldhirsch. The data are from their March, 1986, helicopter experiments.

The data consists of two helicopter runs taken on the Baltimore-Washington Parkway,

heading south, with the van in the right lane and the helicopter to the right of the van.

The data were taken between the intersection with l-lighway 32 and the New Carrolton

exit.

Data from the first helicopter run are contained in eight files. Each file consists of 87

records which in turn consist of 1.024 seconds of magnitude and phase data spaced 1

ms apart. Data for this run were taken with the elevation angle to the transmitter about

30 • .
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Data from the second helicopter run are again contained in eight files. The format of

these data are the same as the first run. Data for the second run were taken with the

elevation angle to the transmitter about 45 ° .

5.3.2 Verification of Simulator Using Helicopter Data

To test the improved simulator for operation using the new data, the procedure outlined

in Section 4.6 was again used. The simulator output cumulative distribution was first

matched to data containing both shadowed and unshadowed conditions. The fade

duration statistics of the measured and simulated data were then compared.

The first data set used for simulator validation was TD110534. These data were taken

with a 45 ° elevation angle and correspond to 2.25 km of travel with approximately 50%

shadowing. Figure 5.3-1 shows the cumulative distribution plot of TD110534 and the

simulator match to it. Figure 5.3-2 compares the cumulative fade durations at five

different thresholds for the simulated and measured data.

Next we concatenated four data sets with 45 ° elevation angles. Data sets TD110534,

TDII1039, TDIII220, and TDIII401 were concatenated to produce data which

correspond to 9.08 km of travel with approximately 42% shadowing. Figure 5.3-3 shows

the distribution plot of the concatenated data and the simulator match to it. Figure

5.3-4 compares the cumulative fade durations at five different thresholds for the

simulated and measured data. Again, the agreement is very good.
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To test the operation of the simulator for data collected at 30 ° elevation angle, we

matched the cumulative distribution of the simulator output to data set TDI03416.

Data set TDI03416 contains data for 2.01 km of travel with approximately 55%

shadowing. Figure 5,3,5 shows the distribution of these data and the simulator match.

The cumulative fade durations at five thresholds for the simulated and measured data

are compared in Figure 5.3-6.

The final test was performed using three data sets with 30 ° elevation angles. These

include TD103416, TD103745, and TD103927. The concatenation of these data sets

produced data which correspond to 6.97 km of travel with approximately 71%

shadowing. Our simulator match to the cumulative distribution of the concatenated

data is shown in Figure 5,3-7. Figure 5.3-8 compares the cumulative fade durations for

the simulated and measured data. Agreement is excellent.
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VI. CONCLUSIONS AND

RECOMMENDATIONS

In this report, we described a software simulator that generates a received LMSS signal

that is used for predicting fade duration statistics. The only simulator input is a

cumulative distribution plot of the data to be generated. We started the simulator

development by following the efforts of the JPL and CRC simulators and generating the

diffuse component in precisely the same manner as these simulators. We then added to

previous efforts by using a scaled attenuation approach to generate the direct

component of vegetatively shadowed data. To improve the simulator, we found that

we needed to abandon the original approach to generating the diffuse process and use

data to generate the diffuse component of the signal. The final simulator is based

entirely on data, using universal data sets to generate both the direct component and the

diffuse component of the LMSS signal.

Some of the most significant results noted in the simulator development are:
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I. In all of the data examined and simulated by us, the unshadowed data seldom

contained fades in excess of 5 dB. Thus, in data we examined, it appears that the

unshadowed Rician distributed fades are not important, but other data have indicated

more severe unshadowed fading which make inclusion of a unshadowed data generator

a necessary part of the simulator.

2. To produce good simulator data with the proper dynamic behavior, the distribution

of the simulator output must be closely matched to that of the desired measured data.

Essentially, this means that the simulator appears to have universal dynamic

characteristics, but it must be tuned by K, K, IJs, and oR to produce output with the same

characteristics as the desired data. The cumulative distribution plot is the tool used to

tune the simulator and determine the proper values of the input parameters. This tuning

process requires knowledge of the percentage of vegetative shadowing fairly well and

following the matching procedure outlined in Appendix C.

3. The dynamic characteristics of the LMSS signal envelope appear to be universal. The

VT simulator, since it is based entirely on data, relies on the assumption that the

dynamic characteristics of the data are universal. In Section 5.3, we showed that the

simulator (based entirely on data collected in Texas) predicted fading dynamics for data

collected in Maryland at two different elevation angles extremely well. This indicates to

us that indeed the dynamic behavior is universal and that the simulator may be

employed to generate data for any area of the country where a cumulative fade duration

curve is available.

Although the simulator is basically complete, we have a few recommendations for

further investigation. First, the simulator should be modified slightly for operation at

L-band (the present frequency of operation is 869 MHz). The only change necessary for
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this is to change the lognormal data base so it is a function of distance traveled instead

of wavelengths traveled as it presently is. After this modification, the operation of the

simulator at L-band must be tested by using a measured L-band data set. Finally,

distribution curves, based on vegetation and terrain, should be obtained for various parts

of the country so that the simulator can be used to predict dynamic fade characteristics

for the curves.
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Appendix A. PROCESSING THE VOGEL

NOVEMBER 1984, BALLOON EXPERIMENT

DATA

The 869 MHz signal envelope data supplied by Vogel from his November 1984, balloon

experiments was sent as a group of 37 floppy disks, each containing a file of 259,560

bytes of data. Each file consists of 63 records of 4120 bytes or 2060 integers. Each

record contains a 24 byte header and I024 samples of the signal level and the phase.

The format of each record is shown in Table A-I. The sampling rate was 1000 Hz, so

each record represents 1.024 seconds of data, and each file represents slightly over one

minute of data. Of the files received, 21 out of the 37 contain at least a small amount

of vegetatively shadowed data. In this appendix, the collection and processing of the

data by Vogel is described. Tl-,is is followed by a discussion of some of our special

processing of the data to get it into an acceptable form for the simulator development.
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Table A-I. Format of Vogcl's November, 1984, balloon experiment data.

Integer No. Length (Bytee) Content

l 2 A sequence number (2...65)

2 2 Receiver antenna used

l=drooping dipole

2=mlcroetrip

3=hell bowl

3-5 6 Time: Hour Hinut_ Second

6 2 Van speed in 0.l mph

7 2 n/a

8 2 n/a

9 2 n/a

I0 2 A power level in 0.01 dB

II 2 n/a

12 2 n/a

13-1036 2048 Signal level in 0.Ol dB

relative to level in

integer #10
1037-2060 2048 Phase in 0.04 dezrees
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,4.1 Collection and Processing of the Data by Vogel

A description of the data collection and processing by Vogel prior to our receiving it is

given in [29] and is partly repeated here. The data was collected on analog tapes by

recording the in-phase and quadrature components continuously. The tapes were then

digitized with 12-bit resolution at 1000 samples per second for the in-phase and

quadrature channels and a lower rate for the speed and if-gain control voltages. The

digitized data were organized into files, each one ofwhich consists of 65 records of 1.024

seconds of data. The A/D converter outputs stored in the files were converted to

received power and phase through a sequence of programs, making use of a calibration

table. Each record was screened by graphic presentation to avoid contamination of the

data base [29/.

During the data collection, the transmitter and receiver oscillators slowly drifted with

respect to each other because they were free running. This resulted in the two detector

outputs having a slowly varying offset frequency co0. Another cause of varying frequency

offset is a change in the Doppler frequency due to a change in the relative velocity

between the balloon-borne transmitter and the receiver in the van. If the inphase and

quadrature voltages are viewed on an x-y oscilloscope display, a phasor r results and

rotates at a radial frequency coo , and amplitude and phase variations can be seen as

changes in the length of r and in the frequency of rotation coo[29[.

The received power can be calculated from the sum of the squares of the two orthogonal

components. To get the phase, calculated as the arc-tangent of the in-phase and

quadrature component, however, one has to eliminate the frequency offset co0 , which
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produces a linear increase or decrease with time of the phase. To determine the offset

frequency, a FFT was performed on one of the two output channels for each 1024 point

record. The peak frequency multiplied by the time represents the phase shift due to the

difference in frequency. It was added or subtracted from the calculated phase, depending

on which output was leading the other. Further, any residual phase sawtooth

appearance due to an error in the estimate of the offset frequency and the 2 rt ambiguity

of the arc-tangent was eliminated and finally the remaining linear trend in the phase data

was removed [29l.

A.2 Additional Processing of the Data by Virginia Tech

The data supplied by Vogel had to be further processed for use in our simulator

development. The majority of the processing was performed on the phase data. This

processing includes forcing the phase to be continuous between 1.024 second records and

removing slow variations in the phase as discussed in Section A.2.1. Additional

processing, as discussed in Section A.2.2, put the data in the form of signal level as a

function of wavelengths traveled with data points spaced 0.I wavelengths apart.
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A.2.1 Phase Processing

The phase data, as supplied by Vogel, were processed as discrete 1.024 second records.

Because the data were processed as discrete records, the phase was discontinuous

between the 1.024 second records. In reality, the phase should be continuous between

the records since the records follow each other continuously in time. The processing of

the data by Vogel, which was adequate for his uses, left arbitrary constants (or phase

references) in the phase data which caused the phase discontinuity between records.

We forced the phase to be continuous between the records by adding an appropriate

constant to the phase of each record. The constant was determined so that the value

of the first phase data point in a record was set equal to the value of the last phase data

point in the previous record. The result is data with the phase discontinuities due to

processing removed. Each file of 6.5 seconds of data was processed in the manner just

described to remove the phase discontinuities.

Processing data to remove slow phase variations was not obvious initially. A few figures

should illustrate the problems we encountered because of slow variations in the raw

phase data. Figure A-I shows 100 wavelengths of unshadowed data from TD090517.

Overlayed on the empirical data is a 20 wavelength long running average of the complex

signal voltage. For the running average shown in this figure, the only phase processing

that has been done is to make the phase continuous between records. The running

average does not follow the mean of the data as it should. This error in the running

average is due to slow variations of the phase data.

The phase ofthe signal data in Figure A-1 is shown in Figure A-2. Note the mean phase

drifts around slowly, uncorrelated to the magnitude data. We hypothesize that these
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slow phase variations are due to path length changes between the balloon and the

mobile as the mobile travels or to slow oscillator drifts not completely removed from the

data by Vogel. Regardless of the reason for the slow phase drifts, they had to be

removed so that the running average could operate properly. They were removed by

highpass filtering the phase data with a 20 Hz highpass digital filter (the filtering

program is named HIGPAS.F and a listing may be found in Appendix B). The resulting

phase data retained its high frequency component due to multipath, but all slow phase

variations were removed. Figure A-3 shows the same data as Figure A-I, but in Figure

A-3 the phase has been forced to be continuous and slow variations have been removed.

Overlayed on the data is the running average. Note that it follows the mean of the data

well as is desired. Figure A-4 shows the raw phase of four records of a typical Vogel

data set from the November 1984, balloon data and the same data after each step in our

data processing.

A.2.2 Changing the Data Format

Once the phase data were completely processed, the format of the data was changed

from signal level as a function of time at a given vehicle velocity to signal level as a

function of wavelengths traveled. The data are normalized into this format by

multiplying the time at which a data point is recorded by a constant obtained by dividing

the vehicle velocity by the wavelength at the frequency of operation (the constant gives

velocity as wavelengths traveled per second). This puts the data into a format of signal

level as a function of wavelengths traveled.
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Figure A-4. Processing the phase data. (a) Four records of raw phase from Vogel's
November 1984, balloon experiments. (b) Phase is forced to be continuous between
records. (c) Phase is then highpass filtered.
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After the format of the data has been changed to eliminate the velocity variable, a

process of interpolation is used to get data that is spaced 0.I wavelengths apart. This

process very simply puts the data into complex voltage form, does a simple interpolation

if the data points do not fall exactly 0.1 wavelengths apart (which they never do), and

puts the data back into phase and magnitude in its original format. The resulting data

is used for all processing in the simulator development.
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R UNA 2.F

C RUNA2.F
C PROGRAM TO PERFORM A RUNNING AVERAGE OF DATA THAT IS SPACED O.1
C WAVELENGTHS APART. TIlE PROGRAM WAS WRITTEN SPECIFICALLY TO HANDLE
C VOGEL'S NOVEMBER, 1984, BALLOON DATA, BUT MINOR MODIFICATIONS WILL
C ALLOW IT TO BE USED WITH ANY DATA SET.
C EACH DATA RECORD IS ASSUMED TO BE PRECEDED BY
C A 12 LINE HEADER, LINE 7 OF WttICH CONTAINS THE NUMBER OF POINTS IN
C THE RECORD. THE RECORDS ARE ASSUMED TO BE CONTINUOUS.

INTEGER COUNT,HEADER(30,12),NUMPTS(30),SUMPTS,MAG(4000),
&PHASE(4000),PROMAG(4000),PROFAS(4000),A
COMPLEX POINT(4000),S UM,PROVO L,SUMMER

C INPUT THE LENGTH OF TIlE AVERAGING WINDOW
WRITE(10,3)

3 FORMAT(IX,'INPUT NUMBER OF WAVELENGTHS LONG AVERAGE IS, REAL')
READ(10,*) ALENTH
LENTH = NINT(ALENTH/0. l)

C INITIALIZE SOME COUNTERS
LL= 1
COUNT=0
SUM = (0.0,0.0)
S UMPTS = 0
IB=0
FUDGE= 3.141593'0.04/180.0

C START GETTING DATA
5 READ(20,10,END=999) (ItEADER(LL,J),J= 1,12)
l0 FORMAT(t6)

NUMPTS(LL) = I IEADER(LL,7)
IF (LL .GT. I) THEN

INIT = SUMPTS + 1
IFIN = SUMPTS + NUMPTS(LL)

ELSE
INIT = 1

IFIN = NUMPTS(LL)
END IF
READ(20,20) (MAG(1),I = INIT,IFIN)
READ(20,20) (PHASE(I),I = INIT, IFIN)

C CtIANGE DATA FROM LOGARITIIM1C FORM TO A COMPLEX VOLTAGE FORM.
CALL PTOV(MAG,PHASE,IN IT,IFIN,POINT)

20 FORMAT(816)
C KEEP TRACK OF TOTAL NUMBER OF POINTS READ

SUMPTS = SUMPTS + NUMPTS(LL)
IF (SUMPTS.LE.LENTtl) TttEN

IF (SUMPTS.LE.LENTH/2) TIIEN
COU NT = LL

END IF
LL= LL+ 1
GO TO 5

END IF
C THE RUNNING AVERAGE OF TilE FIRST AND LAST HALF WINDOW LENGTH
C CANNOT BE DETERMINED SO THEY ARE SET TO 9999 JUST FOR EASY ID.

DO 40 I= I,LENTH/2
PROMAG(1) = 9999
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PROFAS(I)--9999
40 CONTINUE
C OUTPUTRESULTS

IF (COUNT.GT.0) THEN
DO 50 I= I,COUNT

WRITE(30, I0) (HEADER(IJ),J = 1,12)
WRITE(30,20) (PROMAG(J),J = I,NUMPTS(I))
WRITE(30,20) (PROFAS(J),J = I,NUMPTS(t))
IB = IB + NUMPTS(1)

50 CONTINUE
DO 3000 K = I,LL-COUNT

NUMPTS(K) = NUMPTS(K + COUNT)
DO 3010 J= 1,12

HEADER(K,J) = HEADER(K + COUNT,J)
3010 CONTINUE
3000 CONTINUE

LL = LL-COUNT
END IF

C KEEP TRACK OF SUM FOR RUNNING AVERAGE
DO 60 I= I,LENTH

SUM = SUM + POINT(I)
60 CONTINUE

KK=0
MM = LENTIl
JJ = LENTHI2 - IB

65 MM = MM + !
KK--KK+I
JJ= JJ+ 1

C IF WE RUN OUT OF DATA IN TItE RECORD, GO TO THE NEXT RECORD AND
C THEN RESET.

IF (MM.GT.SUMPTS)THEN
LL= LL+ I
READ(20,10,END = 997 (HEADER(LL,J),J = 1,12)
NUMPTS(LL) = ftEADER(LL,7)
READ(20,20) (MAG(1),I = MM,MM + NUMPTS(LL)-I)
READ(20,20) (PHASE(I),I = MM.MM + NUMPTS(LL)-I)
CALL PTOV(MAG.PtlASE,MM,MM + NUMPTS(LL)-I,POINT)
DO 70 I = I,LENTtt + NUMPTS(LL)

POINT(I) = POINT(MM + I- I-LENTH)
70 CONTINUE

SUMPTS = LENTH + NUMPTS(LL)
KK=0
MM = LENTH
JJ=JJ-I
GO TO 65

END IF
C TAKE THE DATA FROM COMPLEX VOLTAGE FORM AND PUT IT BACK INTO
C LOGARITHMIC FORM TO OUTPUT.

PROVOL = SUM/FI.OAT(LENTH)
VOLMAG = CABS(PROVOL)
PWRDB = 20.0*LOG I0(VOLMAG)
PROMAG(JJ) = NINT(PWRDB* 100.0)
ANGLE = ATAN2(AIMAG(PROVOL),REAL(PROVOL))
PROFAS(JJ) = NINT(ANGLE/FUDGE)
SUM = SUM + POINT(MM)-POINT(KK)
WRITE (10,*) SUM,MM,KK,POINT(MM),POINT(KK)C
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IF (JJ.EQ.NUMPTS(I))TttEN
WRITE(30,10)(HEADER(l,J),J= 1,12)
WRITE(30,20)(PROMAG(I),I-- I,NUM/rFS(1))
WRITE(30,20)(PROFAS(1),I= I,NUMPTS(I))
JJ= 0
DO 80 K = I,LL-I

NUMPTS(K) = NUMPTS(K + I)
DO 90 J= 1,12

HEADER(K,J) -- HEADER(K + l,J)
90 CONTINUE
80 CONTINUE

LL = LL- 1
END IF
GO TO 65

999 WRITE(10,100)
100 FORMAT(1X,'NOT ENOUGH DATA')

GO TO 9999
C WRITE OUT TIlE LAST HALF WINDOW LENGTH WITH 9999'S
99 A=LENTtt/2

DO 9000 I = 1,LL-I
IF (NUMPTS(LL-I) .LT. A) THEN

DO 9010 J = I,NUMPTS(LL-I)
PROMAG(JJ + A-J) = 9999
PROFAS(JJ+ A-J) = 9999

9010 CONTINUE
A = A-NUM PTS(LL-I)

ELSE
DO 9020 J = I,A

PROMAG(NUMPTS(LL-I)-J + 1) = 9999
PROFAS(NUMPTS(LL-I)-J + 1) = 9999

9020 CONTINUE
END IF

9000 CONTINUE
MMM = 0
DO 9030 J = I,LL- 1
WRITE(30,10,END = 9999) (HEADER(J,K),K = 1.12)
WR ITE(30,20,END = 9999) (PROMAG(I),I = MMM + I,MMM + NUMPTS(J))
WRITE(30,20,END- 9999) (PROFAS(1),I - MMM + I,MMM + NUMPTS(J))
MMM = MMM + NUMPTS(J)

9030 CONTINUE
9999 STOP

END
C
C
C
C SUBROUTINE TO TAKE SIGNAL LEVEL IN DB AND PHASE IN RADIANS AND
C CONVERT IT TO COMPLEX VOLTAGE.

SUBROUTINE PTOV(MAG,PHASE,BEGIN,LAST,POINT)
INTEGER MAG(4000),PI IASE(4000),BEGIN,LAST
COMPLEX POINT(4000)
FUDGE = 3.141593'0.04/180.0
DO I0 I= BEGIN,LAST

VOLTS= 10.0**(F LOAT(MAG(I))/2000.0)
ANGLE = FLOAT(PHASE(I))*FUDGE
POINT(I) = CMPLX(VOLTS*COS(ANGLE),VOLTS*SIN(ANGLE))

10 CONTINUE
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RETURN
END
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RICSE3.F

C RICSE3.F
C PROGRAM TO TAKE A VOGEL, NOVEMBER, 1984, BALLOON DATA SET AND A
C RUNNING AVERAGE OF THE DATA SET AND EXTRACT THE EAST FADE COMPONENT
C OF THE DATA SET. THIS IS ACCOMPLISHED BY PUTTING THE DATA INTO
C COMPLEX VOLTAGE FORM AND SUBTRACTING THE RUNNING AVERAGE DATA
C FROM THE RAW DATA SET ON A POINT.BY.POINT BASIS.

INTEGER HEADER( 12),VOGHED( 12),VOG MAG(5120),VOG FAS(5120),
* LOGHED( 12),LOGMAG(5120),LOGFAS(5120),TOTPTS,MAG(4096),
* AFAS(4096)
REAL MEAN,MEANSQ,AMAG(4096)
COM PLEX DATA I,DATA2,DIF
LPTS - 1024
TOTPTS -- 0
MM = 0

C FUDGE FACTOR TO GET PttASE DATA INTO RADIANS
FUDGE = 3.141593*0.04/180.0
DO 50 I= 1,12

HEADER(I) =0
50 CONTINUE

C GET THE DATA
5 READ (10,10,END=99) (VOGHED(I),I= !,12)
10 FORMAT(16)

N P'I'S - VOGHED(7)
C RAW DATA FIRST

READ(10,20) (VOGMAG(I),I = TOTPTS + I,TOTPTS + NPTS)
READ(10,20) (VOGFAS(1),I -- TOTPTS + 1,TOTPTS + NPTS)

20 FORMAT(816)
C NEXT GET TilE RUNNING AVERAGE DATA

READ(20,10) (LOGIIED(1),I = 1,12)
READ(20,20) (LOGMAG(I),I = TOTPTS + I,TOTPTS + NPTS)
READ(20,20) (LOGFAS(1),I = TOTPTS + I,TOTPTS + NPTS)
IF ((LOGMAG(I).EQ. 9999).OR. (LOGMAG(TOTPTS + NPTS) EQ. 9999))

* GO TO 5
TOTPTS -- TOTPTS + NPTS
IF (TOTPTS .GE. LPTS) THEN

MM= MM+ 1
SUM = 0.0
SUMSQ:0.0

C PUT THE DATA INTO COMPLEX VOLTAGE FORM AND PERFORM THE SUBTRACTION
DO 30 I: I,LPTS

VOLTS1 = 10.0**(FLOAT(VOGMAG(I))/2000.0)
ANG1 : FLOAT(VOGFAS(I))*FUDGE
DATAI = VOLTS l *CMPLX(COS(ANG1),SIN(ANG l))
VOLTS2= 10.0**(F LOAT(LOGMAG(I))/2000.0)
ANG2: F LOAT(LOG FAS(I))* F U DGE
DATA2 = VOLTS2*CMPLX(COS(ANG2),SIN(ANG2))
DI F = DATA 1-DATA 2

AMAG(1) = CABS(DIF)
SUM = SUM + AMAG(I)
SUMSQ = SUMSQ + AMAG(I)**2
X = REAL(DIF)
Y = AIMAG(DIF)
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IF ((X .EQ.0.0).AND.(Y .EQ.0.0))THEN
AFAS(I) = 0

ELSE
AFAS(I) = NINT(ATAN2(Y,X)/FUDGE)

END IF
30 CONTINUE

C DETERMINE THE MEAN AND MEAN SQUARE VALUE OF TIlE RESULTING DATA
MEAN = SUM]FLOAT(LPTS)
MEANSQ = SUMSQ/FLOAT(LPTS)

C IF TIlE COMPLEX VOLTAGE SUBTRACTION YIELDS 0 VOLTS, THEN THIS
C CORRESPONDS TO MINUS INFINITY OR .9999 DB.
C NORMALIZE THE MAGNITUDE BY ITS MEAN AND CALCULATE ITS
C MAGNITUDE IN DB.

DO 40 I = I,LPTS
IF (AMAG(I) .EQ. 0.0) THEN

MAG(I) = -9999
ELSE

MAG(I) = NINT(2000.0*LOG 10(AMAG(I)/MEAN))
END IF

40 CONTINUE
MEANSQ = MEANSQ/(MEAN**2)
HEADER(1) = MM
I IEADER(2) -- NINT(MEANSQ* 10000.0)
HEADER(7) = LPI"S

C OUTPUT RESULTS
WRITE(30,10) (HEADER(J),J = 1,12)
WRITE(30,60) (MAG(J),J = I,LP'FS)
WRITE(30,60) (AFAS(I),I = I,LPTS)

60 FORMAT(816)
LEFTOVR = TOTPTS-LPTS

C RESET
DO 70 l = I,LEFTOVR

VOGMAG(I) = VOGMAG(TOTPTS-LEFTOVR + I)
VOGFAS(I) = VOGFAS(TOTPTS-LEFTOVR + I)
LOGMAG(I) = LOGMAG(TOTPTS-LEFTOVR + I)
LOGFAS(I) = LOGFAS(TOTPTS-LEFTOVR + I)

70 CONTINUE
TO1 PTS = LEFTOVR

END IF
GO TO 5

99 SI-OP
END
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SIGGE2.F

C SIGGE2.F
C TtlIS IS THE SIMULATOR PROGRAM. IT CONTAINS BOTH THE RAYLEIGH
C GENERATOR AND THE LOGNORMAL SIGNAL GENERATOR. BESIDES REQUIRING
C RAYLEIGH AND LOGNORMAL SIGNAL DATA BASES, IT REQUIRES SIX
C INPUTS. THEY ARE:
C
C TOTPTS - TOTAL NO. OF PTS. TO GENERATE
C PERCSHA - PERCENT VEGETATIVE SHADOWING
C UNSHADK - K VALUE FOR RICE DISTRIBUTION
C SHADK - K OVERBAR VALUE FOR MULTIPATH COMPONENT OF VEGETATIVE
C SHADOWING
C MEAN2 - DESIRED MEAN OF "FILE LOGNORMAL COMPONENT OF VEGETATIVE
C SHADOWING
C STDEV2 - DESIRED STANDARD DEVIATION OF THE LOGNORMAL COMPONENT
C OF VEGETATIVE SHADOWING
C
C NOTE I ONLY OUTPUT THE SIGNAL MAGNITUDE, SINCE THIS IS ALL I NEED
C TO DETERMINE FADE DURATIONS, BUT PHASE MAY ALSO BE OUTPUT IF
C DESIRED.
C
C

REAL MEANSQ,MAG(4096),PHASE(4096),MEAN I,MEAN2
INTEGER TOTPTS,SHAPTS,UNSHAPT,HEADER(12),RSIG(8),LOS(8)
COMPLEX RAYLEI(8),CSIG(8),ALOS(8)
WRITE(10,10)

10 FORMAT(IX,'INPUT TOTAL NUMBER OF POINTS SPACED 0.1 WAVELENGTHS ',
*'APART')
READ (10,*) TOTPTS
TOTPTS = 8*NINT(FLOAT(TOTPTS)/8.0)
WRITE(10,20)

20 FORMAT( IX/INPUT PERCENT SHADOWING')
READ(I0,*) PERCSHA
PERCSHA = PERCSHA/I00.0
WRITE(10,30)

30 FORMAT(IX,'INPUT RICE K FOR UNSHADOWED')
READ(10,*) UNSHADK
WRITE(10,40)

40 FORMAT(IX.'INPUT RICE K FOR SHADOWED')
READ(10,*) SHADK
WRITE(10,200)

200 FORMAT(IX,'INPUT MEAN AND STANDARD DEVIATION FOR SCALED',/,
*IX, 'LOGNORMAL FADES. PRESENT DATA BASE',/,IX,
*'MEAN = -4.1',/,IX,'STANDARD DEVIATION = 2.5')
READ(10,*) MEAN2,STDEV2

C MEAN AND STANDARD DEVIATION OF LOGNORMAL DATA BASE
MEAN 1= -4.1
STDEVI = 2.5

C CALCULATE THE NUMBER OF SttADOWED AND UNSHADOWED POINTS
S HAPTS = 8' NI NT(PE RCS HA *F LOAT(TOTPTS)/8.0)
UNSItAPT = TOTPTS-SHAPTS

C READ UNSHADOWED RAYLIEGH DATA FROM DATA BASE

READ(20,50) (HEADER(1),I = 1,12)
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MEANSQ = FLOAT(HEADER(2))/10000.0
NUMPTS = HEADER(7)
M = NUMPTS/8

C GET K AND K OVERBAR OUT OF DB FORM
UNSHADK = 10.0* *(UNSHADK/20.0)
SHADK = 10.0**(SHADK/20.0)
READ(20,60) (MAG(1),I= I,NUMPTS)

50 FORMAT(16)
READ(20,60) (PHASE(I),I-- I,NUMPTS)

60 FORMAT(8FT.4)
UNSCONS = UNSHADK/SQRT(MEANSQ)
MM = 0

C IF WE RUN OUT OF RAYLEIGH DATA GET MORE
DO 70 I = I,UNSHAPT/8

IF (MM .EQ. M) THEN
MM=0

65 READ(20,50,END= 9995 (HEADER(K),K = 1,12)
GO TO 67

999 REWIND 20
GO TO 65

67 MEANSQ = FLOAT(HEADER(2))/10000.0
UNSCONS = UNSHADK/SQRT(MEANSQ)
READ(20,60) (MAG(K),K = 1,NUMPTS)
READ(20,60) (PHASE(K),K= I,NUMPTS)

END IF
C GENERATE RICE DATA

DO 80 J = 1,8
RAYLEI(J) = MAG(MM*8 + J) * CMPLX(COS(PHASE(MM*8 + J)),

• SIN(PHASE(MM*8 + J)))* UNSCONS
CSIG(J) = (I.0,0.0) + RAYLEI(J)
RS[G(J) = NINT(2000.0*LOG [0(CABS(CSIG(J))))

80 CONTINUE
C OUTPUT RICE DATA MAGNITUDE ONLY

WRITE(40,90) (RSIG(J),J = 1,8)
90 FORMAT(SI6)

MM = MM + 1
70 CO N"[ INUE

M M = 0
C GET SItADOWED RAYLEIGH DATA FROM DATA BASE

READ(50,50) (HEADER(I),I = l, 125
MEANSQ = FLOAT(HEADER(2))/10000.0
NUMPTS = HEADER(7)
M = NUMPTS/8
READ(50,60) (MAG(I),I = 1,NUMPTS)
READ(50,60) (PHASE(I),I = I,NUMPTS)
SHACONS = SHADK/SQRT(MEANSQ)
DO 100 I= I,SHAPTS/8

C IF WE RUN OUT OF StIADOWED RAYLEIGH DATA, GET MORE
IF (MM .EQ. M) TIIEN

M M = 0

75 READ(50,S0,END = 9995) (HEADER(K),K = 1,12)
GO TO 77

9995 REWIND 50
GO TO 75

77 MEANSQ = FLOAT(HEADER(2))/10000.0
SHACONS = SHADK/SQRT(MEANSQ)
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READ(50,60)(MAG(K),K--I,NUMPTS)
READ(50,60)(PHASE(K),K= I,NUMPTS)

END IF
C GET THE LOGNORMAL DISTRIBUTED DATA
85 READ(30,90,END = 9997) (LOS(K),K = 1,8)

GO TO 87
9997 REWIND 30

GO TO 85
C SCALE THE LOGNORMAL DATA, PUT IT INTO COMPLEX VOLTAGE FORM, AND
C ADD THE SHADOWED RAYLEIGH DATA TO GENERATE THE SHADOWED DATA
87 DO ll0J=l,8

RAYLEI(J) = MAG(MM*8 + J) * CMPLX(COS(PHASE(MM*8 + J)),
• SIN(PHASE(MM*8 + J)))*SHACONS

A 1 = FLOAT(LOS(J))/100.0
A2=(STDEV2/STDEVI)*(AI-MEAN1) + MEAN2
ALOS(J) = CMPLX(10.0"*(A2/20.0),0.0)
CSIG(J)= ALOS(J) + RAYLEI(J)
RSIG(J) = NINT(2000.0*LOGI0(CABS(CSIG(J))))

110 CONTINUE
C OUTPUT TIIE SIIADOWED DATA MAGNITUDE

WRI'I'E(40,90) (RSIG(J),J = 1,8)
.MM = M,M 4- 1'

100 CONTINUE
STOP
END
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HIGPAS.F

C ttlGPAS.F
C PROGRAM TO FILTER PHASE OF VOGEL'S DATA. THE PHASE DATA IS HIGHPASS
C FILTERED AT 20 HZ, WITH THE FILTER FREQUENCY RESPONSE BEING READ
C IN ARRAY FILTER(). TttIS ARRAY MAY BE ALTERED SO THAT ANY FILTER
C FREQUENCY RESPONSE MAY BE USED. TilE FILTER IS DESIGNED BY USING
C THE PROGRAM EQFIR:F, WHICH IS AN IEEE PROGRAM FOR DESIGNING AN
C OPTIMUM FILTER'S IMPULSE RESPONSE. THE IMPULSE RESPONSE MUST
C BE PUT INTO THE FREQUENCY DOMAIN TO USE IN THIS PROGRAM.
C VERY IMPORTANT - THIS PROGRAM IS SET UP TO RUN WITH A FILTER
C THAT IS 113 POINTS LONG - THINGS SUCH AS JJ AND NN MUST BE ALTERED
C TO RUN WITH A DIFFERENT FILTER LENGTH. ALSO, SINCE THE FILTER IS
C 113 POINTS LONG, TttERE IS A (N-l)/2 DELAY OR 56 POINT DELAY IN
C THE FILTERED OUTPUT THAT IS THROWN OUT IN THIS PROGRAM. THAT IS,
C I THROW AWAY TIIE FIRST 56 POINTS OUTPUT BY THE FILTER BECAUSE
C TItEY CORRESPOND TO A TIME DELAY. BY DOING THIS, THE PHASE THAT I
C FILTER ALIGNS IN TIME WITH THE MAGNITUDE DATA. ALSO, REALIZE THAT
C THE FINAL 56 PONTS OR SO OUTPUT AT THE END OF THE FILTERING
C ROUTINE ARE GARBAGE AND MUST BE THROWN AWAY - THIS MEANS AT THE
C THE VERY END WHEN WE RUN OUT OF DATA THE OUTPUT IS GARBAGE, NOT
C IN BETWEEN WHEN WE ARE DOING THE OVERLAP SAVE ROUTINE.

INTEGER PHASE( 1024),P ROFAS(1024)
COM PLEX FILTER(1024),CPItAS(1024),TEMP(112)
IFLAG = 0
JJ = 912
NN = 57
DO 10I =1,112

TEMP(1) = (0.0,0.0)
10 CONTINUE

C GET THE FILTER FREQUENCY RESPONSE
20 READ (40,*) (FILTER(I),I-- 1,1024)

C GET TIlE PHASE DATA
30 READ (30,40,END= 99) (PIiASE(I),I = l,JJ)
40 FORMAT (816)

C PUT TIlE PHASE INTO COMPLEX FORM
DO 50 I = 1,JJ

CPItAS(I) = CMPLX(FLOAT(PHASE(I)),0.0)
50 CONTINUE

C ADD ON THE ZEROS SO THAT PROPER UNALIASED FILTERING CAN BE PERFORMED
DO 60 I=JJ+ 1,1024

CPHAS(I) = (0.0,0.0)
60 CONTINUE

C PUT THE PHASE INTO TIlE FREQUENCY DOMAIN
65 CALL FT(CPHAS,1024,10,0,0.001)

C MULTIPLY PHASE IN THE FREQUENCY DOMAIN BY FILTER FREQUENCY RESPONSE
C TO PERFORM TIIE ACTUAL FILTERING

DO 70 I= 1,1024
CPHAS(I) = CPHAS(I)*FILTER(I)

70 CONTINUE
C DO INVERSE FFT TO GET BACK TO THE TIME DOMAIN

CALL FT(CPHAS,1024,10,1,0.001)
C DO THE OVERLAP SAVE AND ADD

DO 80 I= 1,112
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CPHAS(1)=CPHAS(1)+ TEMP(I)
80 CONTINUE

C GET THE FILTER PHASE DATA INTO INTEGER FORM
DO 90 I= l,JJ

PROFAS(I) = NINT(REAL(CPHAS(I)))
90 CONTINUE

C RESET THE OVERLAP SAVE
DO 100 l=JJ+ 1,I024

TEMP(I-JJ) = CPHAS(I)
100 CONTINUE

C OUTPUT THE FILTERED PtIASE
WRITE (50,40) (PROFAS(1),I-- NN,JJ)
NN=I

IF (IFLAG .EQ. 1) STOP
GO TO 30

99 I=I-1
N = 1024-I
DO I10 J-- 1,I

CPHAS(J) = CMPLX(FLOAT(PItASE(J)),0,0)
110 CONTINUE

DO 120J=I+I,I+N
CPHAS(J) = (0.0,0.0)

120 CONTINUE
IFLAG = 1
JJ = 1024

GO TO 65
END

C

C
C
C
C
C
C

9OO
C

SUBROUTINE FT(FFT,N,NF,IBF,DT)

SUBROUTINE FT COMPUTES THE FFT OF A FUNCTION. THE ROUTINE IS BASED
OF TtlEM (N ANY INTEGER). TO USE FFT ENTER THE SAMPLE DATA ALONG
WITH THE NUMBER OF SAMPLES (N), THE POWER OF 2 (NF) AND IBF (FORWARD
OR INVERSE). DF RETURNS AS THE FREQUENCY SAMPLING INCREMENT.

COMPLEX FF'l(8192),CEXP,IMAG,A,B,W,PP,QQ
IMAG = (0.0,1.0)
PI = 3.1415927

C N= NUMBER OF SAMPLE POINTS
C NF= POWER OF 2
C IBF = 0 FOR FORWARD TRANSFORM
C IBF= 1 FOR INVERSE TRANSFORM

IF (IBF.EQ.0) GO TO 900
DO 900 1= I,N
lf (REAL(FFT(I)).EQ.0.0) FF'l'(l) = -IMAG*AIMAG(FFT(I))
IF (AIMAG(FFT(I)).EQ.0.0) GO TO 900
IF (REAL(FFT(I)).EQ.0.0) GO TO 900
FFT(I) = CONJG(FF'f(1))

CONTINUE
CALCULATE P AND W**P

TN= N
W = CEXP(-IMAG*2. *PI/TN)

C CALCULA'FE THE FAST FOURIER TRANSFORM
DO 902 1I= I,NF

J = N/(2**lI)
NS = 2'*(II-1)
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902
C

903
C

904

C
C

909

DO 902 KK = I,NS
DO 902 JJ= 1d
LL=JJ + 2*J*(KK-I)
MM --(LL-I)/2**(NF-II)
CALL IB(MM,NF)
PP= FFT(LL) + (W**MM)*FFT(LL+J)
QQ = FFT(LL) - (W**MM)*FFT(LL + J)
FFT(LL) = PP

FFT(LL + J) = QQ
UNSCRAMBLE

DO 903 I = 1,N
K=I-I
CALL IB(K,NF)
IF(K+ I.LT.I) GO TO 903
QQ = FFT(I)
FFT(I) = FFT(K + 1)
FFT(K+ I)=QQ
CONTINUE
SORTING AND PRINTING ROUTINES

RN=N
DT= I./(RN*DT)
DO 904 I = I,N
IF (IBF.EQ.0) FFT(I) = (1./RN)*FFT(I)
IF (IBF.EQ.I) FFT(I) = CONJG(FFT(1))

CONTINUE
RETURN
END

SUBROUTINE FOR BIT REVERSING
SUBROUTINE IB(LM,LP)
NIL = 0
DO 909 I = I,LP
M = LM/2**(I-1)
RM = M
MM = RM/2.
RMM = MM
RL= RM-2.*RMM
LLL=0
IF (RL.NE.0.) LLL= 1
N1L = ML+ LLL*2**(LP-I)

LM = ML
RETURN
END
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Appendix C. MATCHING DISTRIBUTION OF

THE SIMULATOR OUTPUT TO EMPIRICAL

DATA

For the VT simulator to estimate the dynamic behavior of a LMSS signal envelope, the

distribution of its output must first be matched to the distribution of an empirical data

set (or an estimated distribution). Matching the empirical distribution with Rician and

VS distribution components can be difficult and time consuming. This appendix outlines

a fairly simple and quick procedure for matching the simulator output to any cumulative

distribution plot, assuming the percent shadowing is known fairly well.

shows the distribution of one minute of the Vogel November 1984

containing 47% shadowing which we will try to match.

Figure C- 1

balloon data
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Figure C-I. Cumulative distribution plot of partially shadowed data set TD091540.
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C.I Obtaining the Rician Distributed Portion

As noted in Section 3.1, the portion of the distribution to the left' of the knee of an

LMSS distribution plot where shadowing is present follows a Rician shape (the entire

plot appears Rician if no shadowing is present) and is relatively insensitive to the

amount of shadowing. This portion of the curve is used to determine the K parameter

for generating unshadowed data in the VT simulator. To determine the value of K (in

dB), the simulator is set to generate about 10,000 points of unshadowed data (0%

shadowing) and the value of K in the simulator is varied until the distribution of the

generated data matches the left portion of the empirical distribution. The value of K

that produces this match corresponds to the K of the unshadowed multipath fading

signal. Figure C-2 shows the distribution of the data output by the simulator with an

input of K = -16 dB overlayed on the distribution ofthe data set we are trying to match.

C.2 Obtaining the VS Distributed Portion

Obtaining the VS portion of the distribution is much more complicated because it

requires determination of three input parameters to the simulator. Assuming the percent

shadowing is known, these parameters are g for the Rayleigh generator and PR and oR

for the lognormal generator, These parameters are determined by matching the

simulator output under 100% shadowed conditions to a portion of a VS distribution

curve extracted from the overall empirical data set.
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Figure C-2. Cumulative distribution plot of partially shadowed data set TD091540
and simulator output Rician distribution with input parameter K-- -16 dB.
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The first step in the matching process is to extract the VS distribution curve from the

overall data set distribution. To do this, one must first realize that, in general, the

portion of a total empirical LMSS distribution plot falling below about -8 dB is due

entirely to vegetative shadowing, and that a VS distribution applies only to entirely

vegetatively shadowed data. By knowing these two facts, one may remove a portion of

the VS distribution curve from the overall distribution curve. The best way to illustrate

how this is done is via an example. Figure C-3 shows the distribution we are trying to

match to and the partial VS distribution that has been removed from it. The total data

set contains 40,200 data points of which 47% or 18,894 points correspond to

vegetatively shadowed data points. In the total distribution in Figure C-3, 99.77°,'0 of

the total data points are above the -25 dB threshold. This corresponds to (I -

0.9977)(40,200) = 92 data points equal to or falling below the -25 dB threshold. Now

these data points are vegetatively shadowed data points so 92/18,894 = 0.0049 = 0.49%

of the vegetatively shadowed data points are equal to or lhlling below a -25 dB threshold,

or 99.51% of the vegetatively shadowed data points fall above a -25 dB threshold. Since

we are talking about purely vegetatively shadowed data, the point at (99.5%, -25 dB)

corresponds to a point on the VS distribution curve extracted from the overall data set.

All the points for the VS distributiozl curve in Figure C-3 up to a threshold of about -8

dB are determined in this manner. This process must be stopped at about -8 dB because

unshadowed data starts to corrupt the extraction of the shadowed data.

Once the partial distribution is extracted from the data, the simulator is set to generate

about I0,000 purely shadowed data points and the parameters K, _ts, and oR are varied

until the distribution of the simulator output matches that of the extracted distribution.

The effects on the overall VS distribution due to varying the K, _t_, and a_ simulator

inputs is shown in figures C-4 through C.6. Varying the K and os parameters tends to
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Figure C-3, Cumulative distribution plot of data set TD091540 and partial VS
distribution extracted from it.
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rotate the VS distribution about its mean value. Varying the )*Rparameter tends to shift

the entire VS distribution curve up or down by the amount ofla_. Because g and aMtend

to have the same effect on the VS distribution (at least statistically), K is chosen to be

about 2 to 4 dB greater than the K parameter determined in Section C,I. This range

was chosen by examining the K and ,_ parameters in the Vogel data.

The simulator output was found to match the partial distribution in Figure C-I with

parameters K -- -12dB, )_R -- -6.1dB, gu -- 2.5dB. The input parameter, K, was

previously found to be -16 dB. The total number of points to generate is 40,200 and the

percent shadowing is 47%. Figure C-7 compares the distribution of the simulator

output with these input parameters to the distribution of the data set we are trying to

match, Note the agreement is excellent.

Appendix C. MATCHING DISTRIBUTION OF TIlE SIMULATOR'OUTPUT TO EMPIRICAL
DATA 160



0

QZ -16

-20

n- -24

0.01

'"I ' I ' I ' I °'I ' I ' l " I'

(-4.1,2.5,-I

(-4.1,2.5,-

0.1 0.5 I 5 I0 30 50 70 90 99 99.9

% TIME RECEIVED SIGNAL IS GREATER
THAN ORDINATE

Figure C-4. Cumulative distribution plots of purely shadowed data output by the
VT simulator showing the effect of varying the simulator input parameter K.
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Figure C-5. Cumulative distribution plots of purely shadowed data output by the
VT simulator showing the effect of varying the simulator input parameter p.
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Figure C-6. Cumlative distribution plots of purely shadowed data output by the VT
simulator showing the effect of varying the simulator input parameter o.
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Figure C-7. Cumulative distribution plot of partially shadowed data set TD091540
and the VT simulator match to it.
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